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the successful predictions of nucleosynthesis. The thermal generation of gravitinos

after inflation leads to the bound on the reheating temperature, TRH . 109GeV.
However, it has been recently realized that the non-thermal generation of gravitinos

in the early universe can be extremely efficient and overcome the thermal production

by several orders of magnitude, leading to much tighter constraints on the reheating

temperature. In this paper, we first investigate some aspects of the thermal pro-

duction of gravitinos, taking into account that in fact reheating is not instantaneous

and inflation is likely to be followed by a prolonged stage of coherent oscillations of

the inflaton field. We then proceed by further investigating the non-thermal gener-

ation of gravitinos, providing the necessary tools to study this process in a generic

time-dependent background with any number of superfields. We also present the

first numerical results regarding the non-thermal generation of gravitinos in partic-

ular supersymmetric models.
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1. Introduction

The overproduction of gravitinos represents a major obstacle in constructing cosmo-

logical models based on supergravity [1]. Gravitinos decay very late and — if they

are copiously produced during the evolution of the early universe — their energetic

decay products destroy the 4He and D nuclei by photodissociation, thus jeopardizing

the successful nucleosynthesis predictions [2, 3]. As a consequence, the ratio of the

number density of gravitinos n3/2 to the entropy density s should be smaller than

about 10−12 [4] for gravitinos with mass of the order of 100GeV.
Gravitinos can be produced in the early universe because of thermal scatterings in

the plasma during the stage of reheating after inflation. To avoid the overproduction

of gravitinos one has to require that the reheating temperature TRH after inflation is

not larger than ∼ (108 − 109)GeV [3]. We will come back to this point and present
a detailed analysis of the thermal generation of gravitinos during reheating.

However, it has been recently realized that the non-thermal effects occuring right

after inflation because of the rapid oscillations of the inflaton field(s) provide an extra
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and very efficient source of gravitinos [5, 6]. The helicity ±3/2 part of the gravitino is
excited only in tiny amounts, as the resulting abundance is always proportional to the

gravitino massm3/2 [7]. On the contrary, the helicity ±1/2 part obeys the equation of
motion of a normal helicity ±1/2 Dirac particle in a background whose frequency is a
combination of the different mass scales at hand: the rapidly varying superpotential

mass parameter of the fermionic superpartner of the scalar field whose F -term breaks

supersymmetry, the Hubble rate and the gravitino mass [5, 6]. The non-thermal

production of helicity ±1/2 gravitinos turns out to be much more efficient than their
thermal generation during the reheat stage after inflation [5, 6] and it was claimed

that the ratio n3/2/s for helicity ±1/2 gravitinos in generic supersymmetric models of
inflation is roughly given by 10−2TRH/V 1/4, where V 1/4 ∼ 1015GeV is the height of
the potential during inflation. This leads to a very tight upper bound on the reheat

temperature, TRH . 105(V 1/4/1015 GeV)GeV [6].
The production of the helicity ±1/2 gravitino has been studied in refs. [5, 6]

starting from the supergravity lagrangean and in the simplest case in which the

energy density and the pressure of the universe are dominated by an oscillating

scalar field Φ belonging to a single chiral superfield with minimal kinetic term. An

application in the context of supersymmetric new inflation models has been recently

presented in ref. [8].

The equation describing the production of helicity ±1/2 gravitinos in supergrav-
ity reduces, in the limit in which the amplitude of the oscillating field is smaller than

the Planck scale, to the equation describing the time evolution of the helicity ±1/2
Goldstino in global supersymmetry. This identification explains why there is no sup-

pression by inverse powers ofMP in the final number density of helicity ±1/2 graviti-
nos and is a simple manifestation of the gravitino-Goldstino equivalence theorem: on-

shell amplitudes with external helicity ±1/2 gravitinos are asymptotically equivalent
to amplitudes with corresponding external Goldstinos for energies much larger than

the gravitino mass [9]. This is analogous to the longitudinalW bosons in the standard

electroweak model behaving as Nambu-Goldstone bosons in the high energy limit.

This simple observation about the gravitino-Goldstino equivalence becomes cru-

cial when the problem of computing the abundance of gravitinos generated by non-

thermal effects involves more than one chiral superfield. Describing the production of

helicity ±1/2 gravitinos through the equation of motion of the corresponding Gold-
stino in global supersymmetry is expected to provide the correct result in the case

in which the scalar fields after inflation oscillate with amplitudes and frequencies

smaller than the planckian scale. Luckily, this situation is realized in most of the

realistic supersymmetric models of inflation [10].

The goal of this paper is twofold. In the first part of this work we will still

concern ourselves with some aspects of the thermal production of gravitinos during

the reheating stage after inflation. We will perform a detailed analysis of such a

process, taking into account the fact that reheating is far from being instantaneous.
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Inflation is followed by a prolonged stage of coherent oscillations of the inflaton

field. In this regime, the inflaton is decaying, but the inflaton energy has not yet

been entirely converted into radiation. The temperature T rapidly increases to a

maximum value and then slowly decreases as a−3/8, being a the scale factor of the
universe. Only when the decay rate of the inflaton becomes of the order of the Hubble

rate, the universe enters the radiation-dominated phase and one can properly define

the reheat temperature TRH . During this complicated dynamics, both gravitinos and

entropy are continously generated and one has to solve a set of Boltzmann equations

to compute the final ratio n3/2/s.

In the second part of this work we will be dealing with the non-thermal produc-

tion of gravitinos during the preheating stage after inflation.

Our aim is to provide the reader with all the tools necessary to study the helic-

ity ±1/2 gravitino production in a generic time-dependent background and with a
generic number of superfields. To achieve this goal, we will derive the master equa-

tion of motion of the Goldstino in global supersymmetry with a generic number of

superfields and show that, in the case of one single chiral superfield and amplitudes

of the oscillating fields smaller than the Planck scale, it exactly reproduces the equa-

tion of motion of the helicity ±1/2 gravitino found in refs. [5, 6] starting from the
supergravity lagrangean. As a special case, we will concentrate on the case of two

chiral superfields, which is particularly relevant when dealing with supersymmetric

models of hybrid inflation. We will also present the first complete numerical com-

putation of the number density of the helicity ±1/2 gravitinos during the stage of
preheating for one single chiral superfield. This numerical analysis will be performed

keeping all the supergravity structure of the theory.

The paper is organized as follows. In section 2 we comment about the thermal

production of gravitinos. In section 3, we show how to derive the equation of motion

of the Goldstino in a generic time-dependent background, we reproduce the helic-

ity ±1/2 gravitino equation found in supergravity for one single chiral superfield,
we comment upon the decay rate of the helicity ±1/2 gravitinos and present the
numerical results regarding the number density of gravitinos in particular supersym-

metric models containing a single chiral superfield. Finally, in section 4 we discuss

the non-thermal production of gravitinos for the case of two chiral superfields, which

is relevant for realistic supersymmetric models of inflation.

2. Aspects of thermal production of gravitinos during

reheating

At the end of inflation the energy density of the universe is locked up in a combination

of kinetic energy and potential energy of the inflaton field, with the bulk of the

inflaton energy density in the zero-momentum mode of the field. Thus, the universe
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at the end of inflation is in a cold, low-entropy state with few degrees of freedom,

very much unlike the present hot, high-entropy universe. After inflation the frozen

inflaton-dominated universe must somehow be defrosted and become a high-entropy

radiation-dominated universe.

The process by which the inflaton energy density is converted to radiation is

known as “reheating” [11]. The reader should rememeber that — even if the process

of reheating is anticipated by a stage of preheating [12] — the efficiency of preheating

is very sensitive to the model and the model parameters. In some models the process

is inefficient; in some models it is not operative at all. Even if preheating is relatively

efficient, it is unlikely that it removes all of the energy density of the inflaton field.

In particular, already during the resonant decay of the inflaton field, back-reaction

processes of rescattering [13] always create a sizeable population of inflaton quanta

with non-zero momentum [14] which do not partecipate in the resonant decay. It

is therefore likely that a stage during which the inflaton field is slowly decaying is

necessary to extract the remaining inflaton field energy. This is exactly the stage we

are going to analyze in this section.

The simplest way to envision this process is if the comoving energy density in the

zero mode of the inflaton (or the soft quanta generated in the process of rescattering

during preheating) decays into normal particles, which then scatter and thermalize

to form a thermal background. It is usually assumed that the decay width of this

process is the same as the decay width of a free inflaton field.

There are two reasons to suspect that the inflaton decay width might be small.

The requisite flatness of the inflaton potential suggests a weak coupling of the in-

flaton field to other fields since the potential is renormalized by the inflaton cou-

pling to other fields. However, this restriction may be evaded in supersymmet-

ric theories where the nonrenormalization theorem ensures a cancelation between

fields and their superpartners. A second and basic reason to suspect weak cou-

pling is that in local supersymmetric theories gravitinos are produced during re-

heating. Unless reheating is delayed, gravitinos will be overproduced, leading to a

large undesired entropy production when they decay after big-bang nucleosynthe-

sis.

As we already mentioned, of particular interest is a quantity known as the reheat

temperature, denoted as TRH . In the oversimplified treatment, the reheat tempera-

ture is calculated by assuming an instantaneous conversion of the energy density in

the inflaton field φ into radiation when the decay width of the inflaton energy, Γφ,

is equal to H , the expansion rate of the universe.

The reheat temperature is calculated quite easily [11]. After inflation the inflaton

field φ executes coherent oscillations about the minimum of the potential. Averaged

over several oscillations, the coherent oscillation energy density redshifts as matter:

ρφ ∝ a−3, where a is the Robertson–Walker scale factor. If we denote as ρI and aI
the total inflaton energy density and the scale factor at the initiation of coherent
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oscillations, then the Hubble expansion rate as a function of a is (MP l =
√
8πMP is

the Planck mass)

H2(a) =
8π

3

ρI
M2
P l

(aI
a

)3
. (2.1)

Equating H(a) and Γφ leads to an expression for aI/a. Now if we assume that all

available coherent energy density is instantaneously converted into radiation at this

value of aI/a, we can define the reheat temperature by setting the coherent energy

density, ρφ = ρI(aI/a)
3, equal to the radiation energy density, ρR = (π

2/30)g∗T 4RH ,
where g∗ is the effective number of relativistic degrees of freedom at temperature
TRH . The result is

TRH =

(
90

8π3g∗

)1/4√
ΓφMP l = 0.2

(
200

g∗

)1/4√
ΓφMP l . (2.2)

2.1 Thermal production of dangerous relics in the case of instantaneous

reheating

Under the approximation of instantaneous reheating, the number density of any

dangerous gravitational relic X is readily solved. The Boltzmann equation reads

dnX

dt
+ 3HnX ' 〈σtot|v|〉n2light , (2.3)

where σtot ∝ 1/M2
P is the total cross section determining the rate of production of

the gravitational relic and nlight ∼ T 3 represents the number density of light particles

in the thermal bath.

Since thermalization is by hypothesis very fast, the friction term 3HnX in (2.3)

can be neglected and using the fact that the universe is radiation-dominated, i.e.

H ∼ t−1 ∼ T 2/MP, one finds

nX ∝ T 4

MP
. (2.4)

The number density at thermalization in units of entropy density reads

nX

s
' 10−2 TRH

MP
. (2.5)

As mentioned in the introduction, the slow decay rate of the X-particles is the

essential source of the cosmological problems because the decay products of the

gravitational relics will destroy the 4He and D nuclei by photodissociation, and thus

successful nucleosynthesis predictions. The most stringent bound comes from the

resulting overproduction of D + 3He, which would require that the relic abundance

is smaller than ∼ 10−12 relative to the entropy density at the time of reheating after
inflation [4]

nX
s
. 10−12 . (2.6)
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Comparing eqs. (2.6) and (2.5), one may obtain an upper bound on the reheating

temperature after inflation [3]

TRH . (108 − 109)GeV . (2.7)

If TRH ∼ MGUT, dangerous relics such as gravitinos would be abundant during

nucleosynthesis and destroy the good agreement of the theory with observations.

However, if the reheating temperature satisfies the gravitino bound, it is too low

to create superheavy GUT bosons that eventually decay and produce the baryon

asymmetry [15].

In the discussion above, the crucial quantity which determines the abundance

of dangerous relics after reheating is the reheat temperature TRH (or the inflaton

decay rate Γφ through eq. (2.2)). The reheat temperature is calculated by assuming

an instantaneous conversion of the energy density in the inflaton field into radiation

when the decay width of the inflaton energy is equal to the the expansion rate of the

universe.

However, the reheating process is not instantaneous. Right after inflation the

decay width of the inflaton is expected to be much smaller than the Hubble rate,

Γφ � H , otherwise TRH will violate the gravitino bound. Therefore, the universe

undergoes a very long period of matter-domination during which the energy density

is dominated by the oscillations of the inflaton field around the minimum of its

potential. These oscillations last till the cosmic time becomes of the order of the

lifetime of the inflaton field.

In this early-time and prolonged regime of inflaton oscillations, the inflaton is

nevertheless decaying, ρφ ∝ e−Γφt, but the inflaton energy has not yet been entirely
converted into radiation. The temperature T has the following behaviour. When

the inflaton oscillations start and a small portion of the inflaton energy density has

been transferred to radiation, the temperature rapidly grows to reach a maximum

value TMAX and then it decreases scaling as a
−3/8, which implies that the entropy

per comoving volume S is created: S ∝ a15/8 [16, 11]. During this long stage, the

universe is not yet radiation-dominated. Finally, when t ∼ Γ−1φ , the inflaton energy
density gets converted entirely into radiation and the universe enters the radiation-

dominated phase. Only at this point one can properly define the reheat temperature

TRH . Indeed, the reheat temperature is best regarded as the temperature below

which the universe expands as a radiation-dominated universe, with the scale factor

decreasing as g
−1/3
∗ T−1, where g∗ is the number of relativistic degrees of freedom. In

this regard it has a limited meaning [16, 11].

When studying the production of dangerous relics during reheating, it is neces-

sary to take into account the fact that reheating is not instantaneous and that the

maximum temperature is greater than TRH . This implies that TRH should not be

used as the maximum temperature obtained in the universe during reheating. The
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maximum temperature is, in fact, much larger than TRH
1 and it is inconsistent to

solve the Boltzmann equation for the gravitational relics assuming that throughout

the period of reheating nlight ∼ T 3 ∝ a−3 and that the reheat temperature TRH is
the largest temperature of the thermal system after inflation. The goal of the next

subsection is to provide a more appropriate computation of the number density of

dangerous relics generated during the process of reheating. For sake of simplicity,

we will focus on the gravitino case, but our results may be easily extended to other

dangerous gravitational relics.

2.2 A more appropriate approach to thermal generation of gravitinos dur-

ing reheating

Let us consider a model universe with three components: inflaton field energy, ρφ,

radiation energy density, ρR, and the number density of the gravitino, n3/2. We will

assume that the decay rate of the inflaton field energy density into radiation is Γφ.

We will also assume that the light degrees of freedom are in local thermodynamic

equilibrium. This is by no means guaranteed, but the analysis performed in ref. [17]

shows that, even if thermalization does not occur, production of gravitinos during

reheating is not much different.

With the above assumptions, the Boltzmann equations describing the redshift

and interchange in the energy density among the different components is

ρ̇φ + 3Hρφ + Γφρφ = 0 ,

ρ̇R + 4HρR − Γφρφ = 0 ,
ṅ3/2 + 3Hn3/2 + 〈σtot|v|〉

[
n23/2 −

(
nEQ3/2

)2]
= 0 , (2.8)

where dot denotes time derivative. Here 〈σtot|v|〉 is the total thermal average of
the cross section times the Møller flux factor giving rise to the gravitino production

and we have neglected the back-reaction of the gravitino abundance on the radiation

energy density. The equilibrium energy density for the gravitinos, nEQ3/2 , is determined

by the radiation temperature, T .

It is useful to introduce two dimensionless constants, αφ and αX , defined in terms

of Γφ and 〈σ|v|〉 as
Γφ = αφMφ 〈σ|v|〉 = αXm−23/2 . (2.9)

For a reheat temperature much smaller than Mφ, Γφ must be small. From eq. (2.2),

the reheat temperature in terms of αφ and Mφ is TRH ' α
1/2
φ

√
MφMP l. For Mφ =

1013GeV, αφ must be approximately smaller than 10
−13.

1As an application of this, particles of mass as large as 2 × 103 times the reheat temperature
TRH may be produced in interesting abundance to serve as dark-matter candidates [17].
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It is also convenient to work with rescaled quantities that can absorb the effect

of expansion of the universe. This may be accomplished with the definitions

Φ ≡ ρφM
−1
φ a3 ; R ≡ ρRa

4 ; X ≡ n3/2a
3 . (2.10)

It is also convenient to use the scale factor, rather than time, for the independent

variable, so we define a variable x = aMφ. With this choice the system of equa-

tions (2.8) can be written as (prime denotes d/dx)

Φ′ = −c1 x√
Φx+R

Φ ,

R′ = c1
x2√
Φx+R

Φ ,

X ′ = −c3 x−2√
Φx+R

(
X2 −X2EQ

)
. (2.11)

The constants c1, c2, and c3 are given by

c1 =

√
3

8π

MP l
Mφ

αφ , c2 = c1
Mφ
MX

αX
αφ

, c3 =

√
3

8π
αX

MP lMφ
m23/2

. (2.12)

XEQ is the equilibrium value of X, given in terms of the temperature T as

XEQ =
3

4

ζ(3)

π2
g3/2x

3

(
T

Mφ

)3
. (2.13)

The temperature depends upon R and g∗, the effective number of degrees of freedom
in the radiation:

T =

(
30

g∗π2

)1/4
Mφ

R1/4

x
. (2.14)

It is straightforward to solve the system of equations in eq. (2.11) with initial

conditions at x = xI of R(xI) = X(xI) = 0 and Φ(xI) = ΦI . It is convenient to

express ρφ(x = xI) in terms of the expansion rate at xI , which leads to

ΦI =
3

8π

M2
P l

M2
φ

H2I
M2
φ

x3I . (2.15)

Before numerically solving the system of equations, it is useful to consider the early-

time solution for R. Here, by early time, we mean H � Γφ, i.e. before a significant
fraction of the comoving coherent energy density is converted to radiation. At early

times Φ ' ΦI , and R ' X ' 0, so the equation for R′ becomes R′ = c1x
3/2Φ

1/2
I .

Thus, the early time solution for T is simple to obtain [17]

T

Mφ
'
(
12

π2g∗

)1/4
c
1/4
1

(
ΦI
x3I

)1/8 [(
x

xI

)−3/2
−
(
x

xI

)−4]1/4
, (H � Γφ) . (2.16)
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Thus, T has a maximum value of

TMAX

Mφ
= 0.77

(
12

π2g∗

)1/4
c
1/4
1

(
ΦI
x3I

)1/8
= 0.77α

1/4
φ

(
9

2π3g∗

)1/4(
M2
P lHI

M3
φ

)1/4
, (2.17)

which is obtained at x/xI = (8/3)
2/5 = 1.48. It is also possible to express αφ in

terms of TRH and obtain

TMAX

TRH
= 0.77

(
9

5π3g∗

)1/8(
HIMP l

T 2RH

)1/4
. (2.18)

For an illustration, in the simplest model of chaotic inflation HI ∼ Mφ with

Mφ ' 1013GeV, which leads to TMAX/TRH ∼ 103(200/g∗)1/8 for TRH = 109GeV.
For x/xI > 1, in the early-time regime T scales as a

−3/8, which implies that
entropy is created in the early-time regime [16]. So if one is producing gravitinos

during reheating it is necessary to take into account the fact that the maximum

temperature is greater than TRH , and that during the early-time evolution, T ∝
a−3/8.
The equation of motion of the number density of the gravitino is easily solved

numerically. The results are plotted in figure 1. The total cross section for the

gravitino production is such that αX ' 16.6(m3/2/MP)2 while the total number of
relativistic degrees of freedom is g∗ ' 230. The inflaton parameters have been chosen
to have TRH = 10

9GeV, which gives TMAX ' 1012GeV.
We observe that the quantity (n3/2/s)/(n3/2/s)final, where s is the entropy den-

sity, gradually increases with time when Γφ is smaller than H , but remains always

smaller than unity until the inflaton decays at t ∼ Γ−1φ . This means that most of
the gravitinos are produced at the last stage of reheating when the inflaton decays

and it makes sense to talk about TRH . We have also checked that (n3/2/s)final ap-

proximates well the usual estimate one gets neglecting the non-trivial evolution of

the temperature of the radiation during the period Γφ � H . This result can be

explained recalling that — during the coherent oscillation epoch — the entropy per

comoving volume is increasing and the abundance of the just-produced gravitinos

is continuously diluted by the entropy release. We have also checked that the final

number density of gravitinos has a dependence, even though weak, on the frequency

of the inflaton oscillations Mφ. This dependence is not present in the case of instan-

taneous reheating, where the number density of gravitinos depends only upon the

reheating temperature and not on the frequency of the inflaton oscillations.

We conclude that — even though the maximum temperature of 1012GeV seems

to be in contradiction with the usually quoted upper bound of (109 − 1010), impos-
ing the constraint (2.6) gives the usual upper bound on the reheating temperature
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Figure 1: The time dependence of the temperature, the radiation energy density, the

inflaton energy density and the gravitino number density for the case TRH = 10
9GeV.

TRH . 109GeV. One should keep in mind, however, that the thermal evolution of
the universe before the epoch t ∼ Γ−1φ is nonstandard and the physics leading to
the bound TRH . 109GeV is much more involved than is usually thought. This
observation might be relevant when dealing with either a different parameter space

for the gravitino, e.g. if the gravitino is very light, or with other kinds of dangerous

relics.

3. Non-thermal production of gravitinos and the gravitino-

Goldstino equivalence

As shown in refs. [5, 6], non-thermal effects occuring right after inflation due to the

rapid oscillations of the inflaton field(s) may lead to copious gravitino production.

As we noted in the introduction, this occurs because the helicity ±1/2 part of the
gravitino can be efficiently excited during the evolution of the Universe after inflation.

The non-thermal generation can be extremely efficient and overcome the thermal

production by several orders of magnitude, in realistic supersymmetric inflationary

models.

The equation of the helicity ±1/2 gravitino has been found in refs. [5, 6] in the
case in which the energy density and the pressure of the universe are dominated

by an oscillating scalar field Φ belonging to a single chiral superfield with minimal
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kinetic term. In this section we would like to study the non-thermal production of

gravitinos in a generic time-dependent gravitational background and for a generic

number of chiral superfields.

The equation of the helicity ±1/2 gravitino with a single chiral superfield and
minimal kinetic term is identical to the familiar equation for a spin-1/2 fermion in a

time-varying background with frequency Ω, which depends upon all the mass scales

appearing in the problem, namely the Goldstino mass parameter ∂2ΦW (where W (Φ)

denotes the superpotential), the Hubble rate H and the gravitino mass m3/2. In

the limit in which the amplitude of the oscillating scalar field is small, |Φ| � MP,

the frequency of the oscillations tends to ∂2ΦW . The frequency Ω corresponds to

the superpotential mass parameter of the Goldstino which is ‘eaten’ by the gravitino

when supersymmetry is broken. Therefore, the equation describing the production

of helicity-1/2 gravitinos in supergravity reduces, in the limit of |Φ| � MP, to

the equation describing the time evolution of the helicity-1/2 Goldstino in global

supersymmetry and no suppression by powers of MP is present.

This does not come as a surprise and is in agreement with the gravitino-Goldstino

equivalence theorem. In spontaneously broken supergravity, the initially massless

gravitino acquires a mass through the superhiggs mechanism [18, 19], by absorbing

the Goldstino which disappears from the physical spectrum. Before becoming mas-

sive, the gravitino, which is a Majorana spin 3/2 particle, posseses only ±3/2 helicity
states. The Goldstino, a Majorana fermion, provides for its missing (longitudinal)

±1/2 states. The equivalence theorem is valid in the limit of large energies compared
to m3/2 where the longitudinal component of the gravitino effectively behaves as a

spin 1/2 Goldstino [9].

Therefore, it appears of advantage to compute the equation of motion of the

helicity ±1/2 gravitino by finding the equation of motion of the corresponding Gold-
stino in global supersymmetry. This procedure is particularly welcome when the

problem involves more than one chiral superfield and is expected to provide the cor-

rect result for the number density of helicity ±1/2 gravitinos in the case in which
the scalar fields after inflation oscillate with amplitudes and frequencies smaller than

the planckian scale. This is exactly what is realized in most of the realistic super-

symmetric models of inflation [10].

3.1 The equation of motion of the Goldstino in global supersymmetry and

in a time-dependent background

Let us now find the equation of motion of the Goldstino when the energy density

of the background is dominated by a set of scalar fields following the trajectories

imposed by their equation of motion. We will therefore suppose that the scalar fields

are displaced from the minima of their potential and are free to oscillate about such

minima. This is what happens right after inflation and during the preheating stage.
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The identification of the Goldstino requires a generalization of the standard

procedure used in the static case, that is when the scalar fields are sitting at the

minima of their potential and the cosmological constant vanishes. In the following

we will neglect the expansion of the universe. For the practical purpose of computing

the number density of helicity ±1/2 gravitinos generated during the preheating stage,
this is good approximation since the non-thermal production of gravitinos is expected

to overcome the thermal generation in those supersymmetric models in which the

frequency of the oscillations of the scalar fields is much larger than the rate of the

expansion of the universe and most of the gravitinos are generated within the first few

oscillations. Neglecting the expansion of the universe will also make the identification

of the Goldstino more transparent. Finally, we will not concern ourselves with a

theory charged under some gauge group, but suppose that during the evolution of

the system some F -term is nonvanishing. Our findings can be easily generalized

to include the possibility that supersymmetry is broken by some (time-dependent)

D-term.

Consider a global supersymmetric theory with lagrangean

L = ∂µzi∂
µzi +

i

2
χ̄iγµ∂

µχi − V (zi, zi)− 1
2

(
Wijχ̄iPLχ

j + h.c.
)
,

V (zi, zi) = Wi(W
†)i . (3.1)

HereW = W (zi) is the superpotential, zi and χi denote a set the scalar and fermionic

fields respectively, zi = (z
i)†, Wi = ∂W/∂zi and PL = (1 − γ5)/2 is the left-handed

projection operator. The index i runs from 1 to N , being N the number of multiplets

and we use the standard convention that the sum is intended when the index i is

contracted.

The lagrangean is invariant under the following set of supersymmetric transfor-

mations

δεz
i =
√
2ε̄PLχ

i,

δεχ
i =
√
2Θiε, (3.2)

where ε is the spinor parametrizing the infinitesimal supersymmetric transformation

and we have defined the matrix

Θi =
[
i∂/zi − (W †)i

]
. (3.3)

Given a generic background, supersymmetry is broken if

〈δεχi〉 6= 0 . (3.4)

This happens if the expectation value of the matrix Θi is nonvanishing

〈Θi〉 6= 0 . (3.5)
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In particular, for a constant (time-independent) background, one recovers the usual

condition that supersymmetry is broken if, for some field zi, the F -term is nonvan-

sishing

〈Wi〉 6= 0 . (3.6)

On the other hand, in the case of a time-dependent background, the breakdown of

supersymmetry comes also from the

γ0
dzi

dt
(3.7)

piece in the matrix Θi. This is not surprising since supersymmetry is broken in the

early universe anytime some form of nonvanishing energy density appears. This is

what happens during inflation and the subsequent stage of preheating and reheating

when scalar fields oscillate around the minima of their potential.

The Goldstone theorem tells us that the Goldstino is easily identified from the

supersymmetric transformation (3.2)

η = Θiχi . (3.8)

We introduce now the two projection operators

(P⊥)ij = δij − Θ
†
i

Θ†Θ
Θj ,

(P ‖)ij =
Θ†i
Θ†Θ
Θj , (3.9)

where we have defined Θ†Θ = Θ†kΘk. The two operators project respectively onto
the subspace orthogonal to the Goldstone fermion and onto the Goldstone fermion

itself.

Making use of the definition (3.3), we find that, for a background of real fields,

Θ†Θ =
∑
i

[(
dzi

dt

)2
+ (Wi)

2

]
= ρ . (3.10)

Therefore, the combination Θ†Θ gives the total energy density of the system ρ which

— if the expansion of the universe is neglected — remains constant in time.

The spin 1/2 field χi can be rewritten as

χi = χ⊥i +
Θ†i
Θ†Θ

η ,

χ⊥i = (P
⊥)ijχj . (3.11)

Notice that the fields χ⊥i are not linearly independent since they satisfy the following
relation

Θiχ
⊥
i = 0 . (3.12)

This condition tells us that one of the χ⊥i fields may be expressed in terms of the
remaining (N − 1) ones.
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We now choose the nonvanishing vacuum expectation values of the scalar fields

in the real direction, Re zi = φi/
√
2, Im zi = 0. The equation of motion of the scalar

and fermionic fields read

φ̈i = −WijWj , (3.13)

iγ0χ̇i = k̂χi +Wijχj , (3.14)

where the dots stand for derivative with respect to time, k̂ = ~γ · ~k and we have
used the plane-wave ansatz χi ∼ ei

~k·~x for the space-dependent part. The matrices Θi
satisfy the following equation

iγ0Θ̇i = −WijΘj . (3.15)

Inserting now the decomposition (3.11) into eq. (3.14), multiplying by Θi and Θ
†
i

respectively and making use of the eq. (3.15), we get the following equations of

motion

iγ0η̇ = k̂G†η + k̂χ̂ , (3.16)

iγ0 ˙̂χ = −iG†γ0η̇ + k̂η + 2Θ†iWijχ⊥j , (3.17)

where we have defined the following combinations

G = ΘiΘi
Θ†Θ

,

χ̂ = Θ†iχ
⊥
i . (3.18)

The matrix G can be expressed in terms of the energy density ρ and the pressure p
of the oscillating scalar fields

G = −p+ 2iγ
0Ẇ

ρ
. (3.19)

Differentiating eq. (3.16) with respect to time and using eq. (3.17) we find the master

equation of motion of the Goldstino

η̈ + k2η + iγ0k̂Ġ†η − 2ik̂γ0Θ̇†iχ⊥i = 0 . (3.20)

This equation is valid for a generic number of chiral superfields and — because of the

gravitino-Goldstino equivalence theorem — is expected to provide the necessary tool

to describe the production of helicity ±1/2 gravitinos during the preheating stage
after inflation, when the typical energy of the system and field amplitudes (or the

frequencies of the oscillations of the scalar fields) are large compared to the gravitino

mass m3/2 and smaller than the Planck scale. We notice the non-trivial result that

any time-dependent function has disappeared from the k2η term; in the ultraviolet

regime, eq. (3.20) is solved by plane-waves and particle production shuts off as one

would expect from general arguments.
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In a static background for which φ̇i = 0, we have Θi = Θ
†
i , Ġ

† = Θ̇i = 0 and
χ̂ = 0 by virtue of eq. (3.12). The Goldstino equation is solved by plane-waves and

— as expected — no particle production takes place.

Let us now consider the special case of one single chiral superfield Φ with minimal

kinetic term. We have N = 1, the only physical degree of freedom is the Goldstino

and

χ⊥ = χ̂ = 0 . (3.21)

Eq. (3.16) simplifies to (
iγ0∂0 − k̂G†

)
η = 0 , (3.22)

where

G = Θ1
Θ†1

, (3.23)

and the matrix Θ1 is given in eq. (3.3) for the case i = 1. Notice that the matrix G
has manifestly absolute value equal to unity

|G|2 = G†G = Θ
†
1

Θ1
× Θ1
Θ†1
= 1 . (3.24)

Therefore, it is possible to rewrite G in the following form

G = e2iγ0ϕ , (3.25)

By making a field redifinition η → exp(iγ0ϕ)η, the equation of motion of the Gold-
stino becomes

iγ0η̇ − k̂η −meffη = 0 , (3.26)

where

meff = ϕ̇ =
∂2W

∂Φ2
(3.27)

and we have used the fact that G satisfies the following differential equation

Ġ
G = 2iγ

0∂
2W

∂Φ2
. (3.28)

Eq. (3.26) is the equation of motion of a spin-1/2 fermion in a time-dependent back-

ground given by the oscillating mass meff . We now wish to show that the eq. (3.26)

found for one single chiral superfield in the limit of global supersymmetry correctly

reproduces — for amplitudes of the scalar field Φ much smaller than the Planck scale

— the equation of motion of the helicity ±1/2 gravitino found in refs. [5, 6] starting
from a local supersymmetric theory, i.e. supergravity.
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3.2 Non-thermal production of gravitinos in the case of one chiral

superfield

Let us first remind the reader of some of the basic results obtained in refs. [5, 6]

regarding the equation of motion of the helicity ±1/2 gravitino in the case of one
single chiral superfield and minimal kinetic term.

If we start with the supergravity lagrangean, the single chiral fermion χ— which

is the superpartner of the scalar component in the chiral supermultiplet Φ — plays

the role of the Goldstino and can be gauged away to zero, so that no mixing between

the gravitino ψµ and χ is present. Under these circumnstances, the equation of

motion of the gravitino becomes

Rµ ≡ εµνρσγ5γ̂νDρψσ = 0 . (3.29)

Here Dρ is the covariant derivative and greek letters denote space-time indices. The
condition D · R = 0 gives the following algebraic constraint

γ̂0ψ
0 = c

3∑
i=1

γ̂iψ
i , (3.30)

where the matrix c, in the limit of |Φ| � MP, reduces to

c =
p+ 2iγ0Ẇ

ρ
= −G . (3.31)

Two degrees of freedom may be eliminated using eq. (3.30).

We note that the constraint (3.30) may be recovered in the following alternative

way. The mixing term in the supergravity lagrangean between the gravitino and the

Goldstino is of the form

χ̄γ̂µΘ†1ψµ . (3.32)

By using the definition (3.8) η = Θ1χ the mixing term becomes

1

Θ†1Θ1
η̄Θ1γ̂

µΘ†1ψµ . (3.33)

Choosing the gauge in which such a term vanishes is equivalent to require that

Θ1γ̂
µΘ†1ψµ = 0 . (3.34)

This condition gives γ̂0ψ
0 = −G∑3

i=1 γ̂iψ
i, which coincides with the constraint

(3.30).2

Because of the antisymmetric properties of the Levi-Civita symbol, the equation

R0 = 0 does not contain time derivatives and provides another algebraic constraint

2The constarint (3.34) is easily generalized to the case of many superfields Θiγ̂
µΘ†iψµ = 0.
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on the gravitino momentum modes. Such a constraint allows to remove two extra

degrees of freedom and to define two physical Majorana fermion states ψ3/2 and ψ1/2
which may be shown to correspond to the ±3/2 and ±1/2 helicity states respectively,
by explicitly constructing the helicity projectors in the flat limit [6]. The lagrangean

may be diagonalized as [6] L = L3/2 + L1/2, where

L3/2 = ψ̄3/2

[
iγ0∂0 + i

5ȧ

2a
γ0 −m3/2a

]
ψ3/2 ,

L1/2 = ψ̄1/2

[
iγ0∂0 + i

5ȧ

2a
γ0 +m3/2a+ k̂G

]
ψ1/2 , (3.35)

where a is the scale factor, G = A + iγ0B and A and B are time-dependent func-

tions [6]

A =
1

3
(
ȧ2/a4 +m23/2

)2 [2 äa3
(
m23/2 −

ȧ2

a4

)
+
ȧ4

a8
−

− 4m23/2
ȧ2

a4
+ 3m43/2 − 4

ȧ

a3
ṁ3/2m3/2

]
, (3.36)

B =
2m3/2

3
(
ȧ2/a4 +m23/2

)2 [2 äȧa5 − ȧ3

a6
+ 3m23/2

ȧ

a2
+

ṁ3/2

m3/2a

(
m23/2 −

ȧ2

a4

)]
. (3.37)

They may be expressed in terms the pressure and the energy density of the scalar

field Φ. Here time is conformal and the line element is ds2 = a2(τ)(dτ 2 − d~x2).
The diagonal time and space components of the Einstein equation become

ȧ2

a4
=
1

3M2
P

[
V (Φ) +

∣∣∣∣dΦdt
∣∣∣∣2
]
, (3.38)

2
ä

a3
− ȧ2

a4
=
1

M2
P

[
V (Φ)−

∣∣∣∣dΦdt
∣∣∣∣2
]
. (3.39)

Using the expression forthe gravitino mass m3/2 in terms of the superpotential W ,

m3/2 = e
Φ†Φ
2M2
P
|W (Φ)|
M2
P

, (3.40)

we can write the scalar potential V as

V = e
Φ†Φ
M2
P

[∣∣∣∣∂ΦW + Φ†WM2
P

∣∣∣∣2 − 3|W |2M2
P

]
= m23/2M

2
P

∣∣∣∣∣ ṁ3/2MPam3/2
dΦ
dt

∣∣∣∣∣
2

− 3
 . (3.41)

Replacing eqs. (3.38) and (3.39) in eq. (3.41), one obtains [6]

ṁ23/2 = −
ä2

a4
+
ä

a

(
ȧ2

a4
− 3m23/2

)
+ 2

ȧ4

a6
+ 6

ȧ2

a2
m23/2 . (3.42)
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When this expression for ṁ3/2 is used in eqs. (3.36) and (3.37), we obtain the ra-

markable property [5, 6] ∣∣G†G∣∣ = A2 +B2 = 1 . (3.43)

We are now in the position to show the gravitino-Goldstino equivalence explicitly.

To do so, we neglect the expansion of the universe and the gravitino mass m3/2 and

consider the limit |Φ| �MP. The matrix G has the following limit [5, 6]

G
|Φ|�MP−→ p− 2iγ0Ẇ

ρ
= −G† . (3.44)

The equation of motion of the helicity ±1/2 gravitino therefore reduces to(
iγ0∂0 − k̂G†

)
ψ1/2 = 0 . (3.45)

This equation is exactly reproduced in the global supersymmetric limit by the equa-

tion of motion of the Goldstino (3.22).

One can also use the gravitino-Goldstino equivalence to explain the remarkable

property that the matrix G has absolute value equal to unity, by making use of

eq. (3.24).

3.3 Comments on the gravitino decay

We bragged about achieving a large number density of helicity ±1/2 gravitinos from
non-thermal effects and how this phenomenon is strictly related to the fact that

MP does not appear in the equation of motions, but then tacitly assumed that the

comoving number of helicity ±1/2 gravitinos at nucleosynthesis is the same one which
may be generated during preheating. This issue deserves a closer look because one

might think that helicity ±1/2 gravitinos promptly decay (or rapidly thermalize),
thus not leading to a large undesired entropy production when they decay after

big-bang nucleosynthesis.

However, this is not the case; helicity ±1/2 gravitinos do have a decay rate which
is suppressed by the gravitational coupling M−2

P and is therefore small. This can be

easily understood in the following way. The helicity ±1/2 components of the gravitino
field correspond to the Goldstino, which is derivatively coupled to the supercurrent.

Hence, the total amplitude for the decay rate of the helicity ±1/2 gravitino has to
be proportional to the mass splitting within the supermultiplets. For example, in

the present vacuum, where we suppose supersymmetry is broken by some F -term

with F ∼ m3/2MP, the coupling between the helicity ±1/2 gravitino, a fermion f
and its superpartner f̃ is proportional to (m2

f̃
−m2f )/F . Since (m2f̃ −m2f ) ∼ m23/2,

the coupling is suppressed by m3/2/M
−1
P . Similarly, the coupling of the helicity ±1/2

gravitino, with a gauge boson and a gaugino is proportional to mλ/F ∼ M−1
P , where

mλ ∼ m3/2 is the gaugino mass. This is the reason why, when dealing with thermal

production of gravitinos during reheating, the helicity ±1/2 and ±3/2 gravitinos are
treated on the same ground and have both MP-suppressed cross sections.
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Right after inflation and during the preheating stage, supersymmetry is badly

broken by the energy density ρ stored in the oscillating scalar fields and what mea-

sures the breaking of supersymmetry is not a simple F -term like in the present

vacuum, but the parameter
√
Θ†Θ = ρ1/2. The helicity ±1/2 gravitinos may decay

into lighter fermions and sfermions through a coupling proportional to ∆m2/ρ1/2,

where ∆m2 is the mass-splitting in the given light supermultiplet. As supersymme-

try breaking is transmitted by the gravitational force, at the preheating stage ∆m2

is at most of the order of ρ/M2
P ∼ H2. If the decay is kinematically allowed, the

decay rate of the helicity ±1/2 gravitinos into fermions and sfermions is at most

Γ ∼ ρ

M4
P

Ω ∼
(
H

MP

)(
Ω

MP

)
H � H , (3.46)

where Ω is the typical time-dependent frequency of the oscillations of the scalar fields

responsible for the non-thermal production of the helicity ±1/2 gravitinos (which can
be identified with the typical energy of the produced gravitinos). Similarly, in the

case of decay into gauge bosons plus gauginos, the decay rate is ∼ (Ω/MP)2Ω� H .

These estimates are valid as long as the oscillating scalar fields dominate the

energy density of the universe. The “composition” of the helicity ±1/2 gravitino
through the Goldstino mixture (3.8) changes with time. During the prolonged stage

of coherent oscillations, the main contribution to the helicity ±1/2 gravitino comes
from the fermionic superpartners of the coherently oscillating scalar fields and the

decay rate (3.46) applies. This decay rate is tiny and always smaller than the rate

of the expansion of the universe; the number density of the helicity ±1/2 gravitinos
does not drop during this epoch. At later stages, the main contribution to the helicity

±1/2 gravitino is given by the fermionic superpartners of the scalar fields whose F -
terms break supersymmetry in the present vacuum. This means that — when the

composition of the helicity ±1/2 gravitino changes with time — the decay rate will
smoothly interpolate between (3.46) and the more familiar rate Γ ∼ m33/2/M

2
P. As the

decay rate remains smaller than the Hubble rate till after the nucleosynthesis epoch,

the amount of gravitinos per comoving volume generated by non-thermal effects

during the preheating stage remains frozen till the age of the universe becomes of

the order of M2
P/m

3
3/2. At this moment, gravitinos decay and their decay products

destroy the light element abundances unless n3/2/s is sufficiently small.

3.4 Numerical results for the case of one chiral superfield

In this subsection we wish to provide the first complete numerical computation of

the number density of the helicity ±1/2 gravitinos during the stage of preheating
after inflation in the case in which the energy density of the universe is dominated

by a single oscillating scalar field. It is important to keep in mind that a generic

supersymmetric inflationary stage dominated by an F -term has the problem that the

flatness of the potential is spoiled by supergravity corrections or, in other words, the

19



J
H
E
P
1
1
(
1
9
9
9
)
0
3
6

slow-roll parameter η = M2
PV
′′/V gets contributions of order unity [10]. In simple

one chiral field models based on superpotentials of the type W = MφΦ
2/2 or W =√

λΦ3/3, supergravity corrections make inflation impossible to start. To construct a

model of inflation in the context of supergravity, one must either invoke accidental

cancellations [21], or a period of inflation dominated by a D-term [22], or some

particular properties based on string theory [23]. Nevertheless, we are not interested

here in the inflationary stage, but rather on the subsequent stage of preheating.

During this period, it might be that the superpotential is well-approximated by a

quadratic or cubic expression along the oscillating scalar field.

The equation for the helicity ±1/2 gravitino in the supergravity approach with
one single chiral superfield has been reduced to a more familiar second-order dif-

ferental equation for a spin-1/2 fermion in a time-varying background in refs. [5, 6].

We wish to present here a slightly different derivation. Since the matrix G has

absolute value equal to unity, it is possible to rewrite it in the following form

G = e2iγ
0ϕ , (3.47)

where ϕ is a phase depending upon the conformal time. By making a field redifinition

ψ1/2 → a−5/2exp(−iγ0ϕ)ψ1/2, the lagrangean L1/2 simplifies to

L1/2 = ψ̄1/2 [i∂/−meffa]ψ1/2 . (3.48)

This is the lagrangean for a spin-1/2 fermion in a time-varying background with

effective mass

meff = −
[
m3/2 +

(
ϕ̇

a

)]
, (3.49)

where ϕ = −(i/2)γ0(Ġ/G) and G = A + iγ0B is given in eqs. (3.36). One can use

as a guide the recent results obtained in the theory of generation of Dirac fermions

during and after inflation [20]. During inflation, since the mass scales present in

the effective mass meff are approximately constant in time, one does not expect a

significant production of gravitinos (the number density can be at most n3/2 ∼ H3I ,

where HI is the value of the Hubble rate during inflation). However, in the evolution

of the Universe subsequent to inflation, a large amount of gravitinos may be produced.

During the inflaton oscillations, the Fermi distribution function is rapidly saturated

up to some maximum value of the momentum k, i.e. nk ' 1 for k . kmax and it is

zero otherwise. The resulting number density is therefore nk ∼ k3max. The value of

kmax is expected to be roughly of the order of the inverse of the time-scale needed

for the change of the mass scales of the problem at hand.

The field ψ1/2 can be as usual expanded in terms of Fourier modes of the form

ψ1/2 =

∫
d3k

(2π)3/2
e−i~k·~x

∑
r=±1

[
ur(k, η)ar(k) + vr(k, η)b

†
r(−k)

]
, (3.50)
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where the summation is over spin and the conditions vr(k) ≡ CūTr (−k) and ar = br
are imposed by the fact that the gravitino is a Majorana particle. The canonical

anticommutation relations imposed upon the creation and annihilation operators

may be used to normalize the spinors u and v.

Defining ur ≡ [u+(η)ψr(k), ru−(η)ψr(k)]T and vr ≡ [rv+(η)ψr(k), v−(η)ψr(k)]T ,
where ψr(k) are the two-component eigenvectors of the helicity operators, and using

a representation where γ0 = diag(1,−1), eq. (3.50) can be written as two uncoupled
second-order differential equations for u+ and u−:

ü± +
[
ω2k ± i(meffa)·

]
u± = 0 , (3.51)

where, ω2k = k2 + m2effa
2. In order to calculate the number density, we must first

diagonalize the hamiltonian. In the basis of eq. (3.50) the hamiltonian is

H(η) =

∫
d3k
∑
r

{
Ek(η)

[
a†r(k)ar(k)− br(k)b†r(k)

]
+

+ Fk(η)br(−k)ar(k) + F ∗k (η)a†r(k)b†r(−k)
}
, (3.52)

where the equations of motion can be used to express Ek and Fk in terms of u+ and

u−:3

Ek = kRe(u∗+u−) + ameff
(
1− |u+|2

)
,

Fk =
k

2
(u2+ − u2−) + ameffu+u− . (3.53)

In order to calculate particle production one wants to write the hamiltonian

in terms of creation and annihilation operators that are diagonal. To do this one

defines a new set of creation and annihilation operators, â and b̂†, related to the
original creation and annihilation operators a and b† through the (time-dependent)
Bogolyubov coefficients αk and βk,

â(k) = αk(η)a(k) + βk(η)b
†(−k) ,

b̂†(k) = −β∗k(η)a(k) + α∗k(η)b†(−k) . (3.54)

The Bogolyubov coefficients will be chosen to diagonalize the hamiltonian. Using

the fact that the canonical commutation relations imply |αk|2+ |βk|2 = 1, the choice
αk

βk
=
Ek + ω

F ∗k
, |βk|2 = |Fk|2

2ω(ω + Ek)
, (3.55)

results in a diagonal hamiltonian,

H(η) =

∫
d3k
∑
r

ωk(η)
[
â†r(k)âr(k) + b̂

†
r(k)b̂r(k)

]
. (3.56)

3Here we choose the momentum k along the third axis and use the representation in which

γ3 =
(
0 1

−1 0

)
.
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We define the initial vacuum state |0〉 such that a|0〉 = b|0〉 = 0. The initial
conditions corresponding to the no-particle state are

u±(0) =

√
ω ∓meffa

ω
; u̇±(0) = iku∓(0)∓ iameffu±(0) . (3.57)

The (quasi) particle number operator N = â†r(k)âr(k) such that the particle
number density n is (including the two degrees of freedom from the spin)

n1/2(η) = 〈0|N
V
|0〉 = 1

π2a3(η)

∫ ∞
0

dk k2 |βk|2 . (3.58)

Let us now consider a

Figure 2: The evolution of the parameter meff
in units of Mφ as a function of time and for a

quadratic superpotential. The initial condition is

φ0/MP=10
−1.

quadratic superpotential W =

MφΦ
2/2. The supergravity po-

tential (3.41) is easily computed

for such superpotential. In the

limit |Φ| � MP it reduces to

V =M2
φφ
2/2, but we have retained

its complete supergravity form in

the numerical analysis. It is useful

to write the equation of motions in

terms of dimensionless variables.

We introduce the dimensionless

time τ̃ = Mφτ , as well as the

dimensionless field X = φ/φ0, so

Figure 3: The power spectrum of helicity ±1/2
gravitinos for the initial conditions φ0/MP = 10

−1

and φ0/MP = 10
−3 and for a quadratic superpo-

tential.

that the scalar field is normalized

by the condition X0 = 1. We define

φ0 as the value of the scalar field at

the moment when the oscillations

start.

By solving the Einstein equa-

tions (3.38) and (3.39) and the

equation of motion for the scalar

field, we have found the time-

dependent evolution of meff . It is

plotted in figure 2 in units of Mφ
and for φ0/MP = 10

−1. Notice in
particular that at large times, meff
tends to Mφ. This is expected since one can verify that, in the limit of |Φ| � MP,

meff ' −ϕ̇/a tends to ∂2ΦW =Mφ.
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The result of our numerical in-

Figure 4: The ratio ng/s as a function of time for

φ0/MP = 10
−1 and for a quadratic superpotential.

tegration for the power spectrum of

helicity ±1/2 gravitinos is summa-
rized in figure 3 for two different

values of initial conditions. Since

meff changes by an amount ∼ Mφ
in a time scale ∼M−1

φ , one expects

kmax ∼ Mφ. This expectation is

confirmed by our numerical results

which indicates a cut-off in the

spectrum for k ∼Mφ.

Finally the ratio of the number

density of gravitinos in units of

Figure 5: The evolution of the parameter meff as

a function of time and for a cubic superpotential.

the entropy density s is given in

figure 4 for φ0/MP = 10
−1 and

in units of the reheat temperature

TRH . If the mass of the inflaton

field is Mφ ' 1013GeV as required
by the normalization of density per-

turbations, we see that the non-

thermal particle production of he-

licity ±1/2 gravitinos gives rise to
a number density well beneath the

bound (2.6) [5, 6].

Let us now consider a cubic su-

Figure 6: The power spectrum of helicity ±1/2
gravitinos for a cubic superpotential.

perpotential W =
√
λΦ3/3. In the

limit |Φ| �MP the potential (3.41)

reduces to V = λφ4/4. A special

feature of this theory is that the

problem of gravitino production in

an expanding universe can be com-

pletely reduced to a similar prob-

lem in Minkowski space-time by a

simple conformal redefinition of the

scalar field. This explains why the

effective massmeff does not decrease

with time, see figure 5. Further-

more, meff is expected to oscillate with maximum amplitude |∂2ΦW | =
√
2
√
λφ0 [5, 6].

This behaviour is well-confirmed by the numerical results given in

figure 5.
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The result of our numerical in-

Figure 7: The ratio ng/ρ
3/4 as a function of time

for a cubic superpotential.

tegration for the power spectrum of

helicity ±1/2 gravitinos is summa-
rized in figure 6. In this case meff
changes by an amount

√
λφ0 in a

time scale (
√
λφ0)

−1 and one expects
kmax ∼

√
λφ0. This expectation is

again confirmed by our numerical re-

sults which indicated a cut-off in the

spectrum for k ∼ √λφ0.
Finally, the ratio of the number

density of gravitinos in units of the

entropy density ρ3/4 is given in fig-

ure 7. Here ρ indicate the energy

density stored in the massless oscillating scalar field φ. The result n3/2/ρ
3/4 will

contradict the bound (2.6) by about one order of magnitude [5, 6] when the en-

ergy density in the scalar field is transferred to the energy density of a hot gas of

relativistic particles.

4. Non-thermal production of gravitinos in the case of two

chiral superfields

As we already mentioned, constructing a model of inflation in the context of super-

gravity requires some effort. Realistic supersymmetric models of inflation require the

mass of the inflaton field to be much smaller than the Hubble rate. This is hard to

achieve in the context of supergravity since supergravity corrections spoil the flatness

of the inflaton potential [10]. However, some exceptions are known and they usually

involve more than one scalar field. Consider the superpotential

W = S

(
κ
φ2

2
− µ2

)
, (4.1)

where κ is a dimensionless coupling of order unity [24, 1]. The canonically-norma-

lized inflaton field is Φ ≡ √2|S|. The superpotential (4.1) leads to hybrid inflation.
Indeed, for Φ � Φc =

√
2/κµ, φ = 0 and the potential reduces to V = µ4 plus

supergravity and logarithmic corrections [21]. If the Kähler potential for the super-

field S is minimal, the supergravity corections to the mass term of the inflaton field

cancel and they do not spoil the flatness of the potential. For Φ � Φc the Universe
is trapped in the false vacuum and we have slow-roll inflation. The scale µ is fixed

to be around 5× 1015GeV to reproduce the observed temperature anisotropy.
When Φ = Φc, inflation ends because the false vacuum becomes unstable. The

field φ rapidly oscillates around the minimum of the potential at 〈φ〉 = 2µ/√κ, while
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the field Φ rapidly oscillates around zero. The time-scale of the oscillations isO(µ−1).
The mass scales at the end of inflation change by an amount of order of µ within

a time-scale ∼ µ−1. Therefore, one expects kmax ∼ µ and n3/2 ∼ 10−2µ3 [6]. After
reheating takes place, the final ratio n3/2 to the entropy density is [6]

n3/2

s
∼ 10−2TRH

µ
. (4.2)

This violates the bound in eq. (2.6) by at least four orders of magnitude even if

TRH ∼ 109GeV and imposes a stringent upper bound on the reheating temperature
TRH . 105GeV [6].
The estimate (4.2) obtained in ref. [6] was based on the assumption that the

results on the gravitino production for a single one chiral superfield model are valid

in a theory with more than one superfield. In the following, we wish to show that

this assumption is justified. Instead of attacking the problem of the production

of helicity ±1/2 gravitinos in theories with more than one chiral superfield from
a supergravity point of view, we make use of the gravitino-Goldstino equivalence

theorem. The identification of the helicity ±1/2 gravitino with the Goldstino is well
justified, since the amplitudes of the oscillating fields in the models of supersymmetric

hybrid inflation are far below the Planck scale.

We generically denote the two chiral superfields involved in the generic problem

at hand by Φ1 and Φ2 and by χ1 and χ2 the corresponding fermionic degrees of

freedom. The combination χ̂ can be expressed, making use of eq. (3.12), as

χ̂ = Θ†1χ
⊥
1 +Θ

†
2χ
⊥
2 = −2iγ0

∆

Θ2
χ⊥1 , (4.3)

where we have defined ∆ as

∆ = W1ż2 −W2ż1 = − i
2
γ0
(
Θ1Θ

†
2 −Θ2Θ†1

)
. (4.4)

Using eq. (3.17), the master eq. (3.20) becomes

η̈ + k2η + αη̇ + iγ0k̂
(
Ġ† + α†G†

)
η = 0 , (4.5)

where

α = i
γ0

∆

(
Θ†2Θ̇1 −Θ†1Θ̇2

)
. (4.6)

Notice that ∆ satisfy the following differential equation

∆̇

∆
= −

(
α + α†

)
2

, (4.7)

which is solved by

∆ = ∆(0)e−
∫ t
0 (α+α

†)/2 . (4.8)

Therefore during the time evolution of the system, ∆ will never vanish.
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Redefining η → exp (− ∫ dt α/2) η, eq. (4.5) can be recast in the form
η̈ + k2η −

(
α̇

2
+
α2

4

)
η + iγ0k̂

(
G†e

∫
α†dt
)· ∆
∆(0)

η = 0 . (4.9)

Finding an exact solution to eq. (4.9), or even studying the problem numerically,

goes beyond the scope of this paper; we will limit ourselves to outline a standard

approximation method to estimate the number density of helicity ±1/2 gravitinos.
If we define χin(~x, t) ∼ ηink (t)e

i~k·~x ∝ e−iΩ∞t+i~k·~x to be the solution of the equation at
t→ −∞, i.e. a plane-wave, eq. (4.9) can be written as an integral equation

ηk(t) = η
in
k (t) + Ω

−1
∞

∫ t
−∞

Vk(t
′) sin [Ω∞(t− t′)] ηk(t′)dt′ , (4.10)

where

Vk(t) =

(
α̇

2
+
α2

4

)
− iγ0k̂

(
G†e

∫
α†dt
)· ∆
∆(0)

. (4.11)

Decomposing ηk(t) in terms of u
T
r≡[u+(t)ψr(k), ru−(t)ψr(k)] and vTr ≡[−ru∗−(t)ψr(k),

u∗+(t)ψr(k)], where r is the spin index, in the late time region, eq. (4.10) possesses
the solution

uoutr (t) = α
rr′
k u

in
r′(t) + β

rr′
k vinr′ (t), (4.12)

where the Bogolyubov coefficient βrr
′

k is given by

βrr
′

k = −
(

i

2Ω∞

)∫ ∞
−∞

vin†r′ (t)Vk(t)u
out
r (t) dt , (4.13)

and we have let t→ +∞. If we treat Vk(t) as a perturbative potential, then we can
solve eq. (4.10) by iteration. To the lowest order in Vk, one has u

out
r (t) = uinr (t) ∝

e−iΩ∞t and the Bogolyubov coefficient βrr′k becomes

βrr
′

k = −
(

i

2Ω∞

)∫ ∞
−∞

vin†r′ (t)Vk(t)u
in
r (t) dt . (4.14)

The corresponding number of Goldstinos (or, equivalently, helicity ±1/2 gravitinos)
in a given spin state is therefore

Nkr =
∑
r′
|βrr′k |2 . (4.15)

Even though this approximation is expected to offer only part of the information

about the resonant behaviour of the system, we believe it provides the right order

of magnitude for the number density. In typical supersymmetric hybrid models of

inflation, like the one described by the superpotential (4.1), the system relaxes to

the minimum in a time-scale much shorter than the Hubble time ∼ H−1I , since the
frequency is set by the height of the potential V 1/4 ∼ µ� HI during inflation. The
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number of particles Nkr depends upon Ṽk, the Fourier transform of Vk(t). We are

interested in large momenta and Ω∞ ' k. Since Vk(t) changes by an amount ∼ µ in

a timescale ∼ µ−1, Ṽk rapidly dies out for momenta k � µ, Ṽk ∝ 1 for k . kmax ∼ µ

and zero otherwise. The number of helicity ±1/2 will be ∼ k3max ∼ µ3, confirming

the original estimate made in ref. [6].
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