6 research outputs found

    An analysis of the effectiveness and challenges of cross-functional team structurebased on CISCO Business Councils reform

    Get PDF
    This study explores the possible effectiveness and challenges of matrix organizational structure and cross-functional teams embeddedinto that matrix. The basic concepts of matrix organization were analyzed. The author analyzed the literature dedicated to the subjectof cross-functional teams and examined real cases of companies which applied matrix structure. Based on literature review theadvantages and disadvantages were figured out. Author points out that every organization should react immediately to the rapidlychanging environment and the matrix structure is good approach to succeed. Having reviewed the literature and considered real casesthe author draws the conclusion that any organization will face challenges of cross-functional approach implementation and it willwork only with proper management and only in mature companies

    Evaluation of the possibility of obtaining welded joints of plates from Al-Mg-Mn aluminum alloys, strengthened by the introduction of TiB2 particles

    Get PDF
    In the work, the possibility of obtaining strong welded joints of aluminum alloys modified with particles is demonstrated. For research, strengthened aluminum alloys of the Al-Mg-Mn system with the introduction of TiB2 particles were obtained. TiB2 particles in specially prepared Al-TiB master alloys obtained by self-propagating high-temperature synthesis were introduced ex situ into the melt according to an original technique using ultrasonic treatment. Plates from the studied cast alloys were butt-welded by one-sided welded joints of various depths. To obtain welded joints, the method of electron beam welding was used. Mechanical properties of the studied alloys and their welded joints under tension were studied. It was shown that the introduction of particles resulted in a change in the internal structure of the alloys, characterized by the formation of compact dendritic structures and a decrease in the average grain size from 155 to 95 µm. The change in the internal structure due to the introduction of particles led to an increase in the tensile strength of the obtained alloys from 163 to 204 MPa. It was found that the obtained joints have sufficient relative strength values. Relative strength values reach 0.9 of the nominal strength of materials already at the ratio of the welded joint depth to the thickness of the welded plates, equal to 0.6 for the initial alloy and in the range of 0.67–0.8 for strengthened alloys

    The evolution of software engineering and web development: tools, methods, approaches

    No full text
    This thesis contains an analysis of changes that took place in the field of web development over the past few decades. It includes the tasks undertaken before and now, the tools and methods used, different approaches and qualities that were essential to software engineers before and now. It covers how the working life of projects in general and programmers in specific has changed, how the industry itself was growing, demanding more people and workforce and how those demands were met with innovation, simplification, automatization, and optimization of the working processes to the point, where manual labour of typing in the code key by key became a secondary objective, losing its position to intellectual labor. The workflow of a software engineer has changed to a phase, where it is no longer about creating a solution, but about coming up with one. To conduct this research, literature was read and analyzed, topics were found all over the web, various logs and notes of projects of the past were raised, experienced and young developers, veterans and students of the industry interviewed. The results of this work can be found below

    On the Tensile Strength of Spark Plasma Sintered AlMgB14 Ceramics

    Get PDF
    In this work, the structure, phase composition, hardness and tensile strength of the AlMgB14-based material obtained by spark plasma sintering (SPS) were investigated. According to the XRD results, the spark plasma sintered material contains 94 wt% AlMgB14 phase and 6 wt% spinel MgAl2O4. Analysis of the SEM images showed that the obtained AlMgB14 sample has a dense structure; the relative density of the sample is 98.6%. The average microhardness of the spark plasma sintered (SPSed) sample is 29 ± 0.88 GPa. According to the results of the Brazilian test, the tensile strength of AlMgB14 is 56 MPa. The fracture is characterized by a single straight tensile crack that divides the sample along the compression line into two halves. The type of fracture in the AlMgB14 sample can be characterized as a cleavage fracture due to crack growth occurring in accordance with the transcrystalline fracture. The tensile strength of the obtained material is in good agreement with the tensile strength of boride and oxide ceramics studied in other works

    Experimental and Theoretical Study of Ultra-Hard AlMgB<sub>14</sub>-TiB<sub>2</sub> Composites: Structure, Hardness and Self-Lubricity

    Get PDF
    It is known that the presence of oxygen phases in hard materials leads to an undesirable decrease in the mechanical properties. In materials based on AlMgB14, the main oxygen impurity is spinel MgAl2O4; it significantly reduces the hardness of AlMgB14 and its formation during sintering is inevitable. In this work, the ultra-hard spark plasma sintered (SPSed) AlMgB14-TiB2 composite material was fabricated from the AlMgB14-TiB2 precursor obtained by self-propagating high-temperature synthesis (SHS). Due to the high synthesis temperatures, the main oxygen phase in the obtained composite was Al4B2O9 instead of spinel MgAl2O4. It was found that the obtained composite has excellent mechanical properties. The maximum hardness of the sample is 44.1 GPa. The presence of oxygen in the form of the Al4B2O9 phase led to unexpected results: the friction coefficient of the obtained AlMgB14-TiB2 composite under dry conditions against the Al2O3 counter-specimen is approximately four times lower than the friction coefficient of pure ceramic AlMgB14 (0.18 against 0.7, respectively). Based on the observed results, it was found that the Al4B2O9 particles formed during the SHS are responsible for the low friction coefficient. The quantum chemical calculations showed that the elastic moduli of Al4B2O9 are significantly smaller than the elastic moduli of AlMgB14 and TiB2. Thus, during sliding, Al4B2O9 particles are squeezed out onto the composite surface, form the lubricating layer and reduce the friction coefficient

    PRODUCTION OF METAL CHEMICAL WELDING ADDITIVE WITH NANODISPERSED PARTICLES OF TITANIUM DIOXIDE

    No full text
    When welding bridge structures automatic welding under a gumboil layer with metal chemical additive (MCA) is widely applied in the modern bridge building. MCA consists of a chopped welding wire (granulated material), which is powdered by modifying chemical additive of titanium dioxide (TiO₂) in the cylindrical mixer «drunk cask». Chemical composition of all welding materials including welding wire, gumboil, electrodes, are strictly normalized and controlled. However, the existing technology of producing MCA doesn’t allow precise controlling of its structure under working conditions and that causes an impact on the stability of welded connections properties. Therefore the aim of this work is to develop a technology to produce stable MCA structure. The paper compares the existing and proposed manufacturing techniques of the metal chemical additive (MCA) which is applied in automatic welding of butt connections for bridge structures. It is shown that production of MCA in a high-energy planetary mill provides more stable structure of the additive introduced into a welded joint. The granulometric analysis of the powder TiO₂ showed that when processing MCA in a planetary mill TiO₂ particles are crashed to nanodimensional order. This process is accompanied by crushing of granulated material too. The proposed method for production of MCA in a planetary mill provides stronger cohesion of dioxide with the granulate surface and, as a consequence, more stable MCA chemical structure. Application of MCA which has been mechanical intensified in a planetary mill, increases stability of mechanical properties, if compare with applied technology, in single-order by breaking point and almost twice by impact viscosity
    corecore