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Abstract: In this work, the structure, phase composition, hardness and tensile strength of the AlMgB14-
based material obtained by spark plasma sintering (SPS) were investigated. According to the XRD
results, the spark plasma sintered material contains 94 wt% AlMgB14 phase and 6 wt% spinel
MgAl2O4. Analysis of the SEM images showed that the obtained AlMgB14 sample has a dense
structure; the relative density of the sample is 98.6%. The average microhardness of the spark plasma
sintered (SPSed) sample is 29 ± 0.88 GPa. According to the results of the Brazilian test, the tensile
strength of AlMgB14 is 56 MPa. The fracture is characterized by a single straight tensile crack that
divides the sample along the compression line into two halves. The type of fracture in the AlMgB14

sample can be characterized as a cleavage fracture due to crack growth occurring in accordance with
the transcrystalline fracture. The tensile strength of the obtained material is in good agreement with
the tensile strength of boride and oxide ceramics studied in other works.
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1. Introduction

Superhard materials are characterized by a hardness of over 40 GPa [1]. Traditionally,
diamond (HV = 80–100 GPa) and cubic boron nitride (HV = 60–80 GPa) are considered to be
superhard materials [2]. It is known that solid materials have a high symmetry of the crystal
lattice, the atoms of which have a strong interatomic bond. Thus, diamond has a strong sp3

covalent bond in the tetrahedral lattice configuration, while cubic BN has the cF8 diamond
structure and belongs to the class of superhard materials due to the strong covalent bond of
BN [2]. However, obtaining boron nitride in a cubic configuration is extremely expensive
due to the need for high temperature and pressure in the synthesis process [1]. In this
regard, the search for hard materials with excellent mechanical properties is an urgent
scientific problem. To date, the attention of researchers is attracted by boron carbide (B4C),
titanium diboride (TiB2) [3–7], cubic silicon carbide (β-SiC) [8], titanium carbide (TiC) [9,10],
etc. Despite the fact that these materials cannot formally be classified as superhard, in the
form of thin-film coatings, they demonstrate hardness values above 40 GPa [11].

It is important to note that all of the above materials have a simple symmetrical
structure that satisfies the traditional paradigm of superhard materials [2,12,13]. However,
since 2000, AlMgB14-based materials, which have a complex low-symmetric orthorhombic
structure and, at the same time, high properties, have been actively studied. Aluminum
magnesium boride (AlMgB14) has many excellent physical properties, such as high hardness
(up to 32 GPa), relatively low density (2.59 g/cm3), oxidation resistance, excellent wear
resistance and a very low coefficient of friction (up to 0.02) [2,14–16]. In combination with
titanium diboride, materials based on AlMgB14 demonstrate hardness reaching 46 GPa [2],
which classifies AlMgB14–TiB2 composite materials as superhard. As of yet, the main efforts
of scientists have been directed at studying the influence of production methods (one-stage
or two-stage sintering) and the composition of the initial mixture (ratio of initial elements,
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pre-reacted powders or mechanical mixture) on the structure, phase formation processes
and properties of AlMgB14-based materials [13–26]. Today, it is traditionally considered
that the best sintering methods for obtaining AlMgB14 are spark plasma sintering and hot
pressing of AlMgB14 powder mixtures [2,14–17,21–23]. At the same time, the properties of
the obtained materials are mainly influenced by the purity of the material (the presence
of MgAl2O4 spinel in the samples leads to a significant decrease in the properties of
AlMgB14 [27]). Nevertheless, despite the comprehensive number of publications devoted
to the study of hardness, density, oxidation resistance, friction coefficients, coefficients of
thermal expansion (CTE), and other properties of AlMgB14-based materials [2,14–19,28],
there are no publications on their strength characteristics, in particular, on the tensile
strength/flexural strength/compressive strength. At the same time, the tensile strength
plays an important role in the analysis of the failure mechanism of structural ceramics and
in the design of various structural ceramic parts; therefore, obtaining data on the strength
characteristics of AlMgB14 is an important research task.

Tensile strength can be determined mainly by the direct tensile test and the Brazilian
test. Conducting tensile experiments on ceramics is too difficult due to their low frac-
ture strain. In turn, the Brazilian test, an indirect tensile method, is a popular choice
for testing ceramic materials [29,30] due to the ease of material preparation and testing.
Thus, the purpose of this work is to study the tensile strength using the Brazilian test, as
well as the structure and the phase composition of AlMgB14 ceramics obtained by spark
plasma sintering.

2. Materials and Methods
2.1. Process for Obtaining AlMgB14-Based Ceramics

AlMgB14-based ceramics were obtained by spark plasma sintering (DR. SINTER
model SPS-625 Spark Plasma Sintering System, SPS SYNTEX INC. Ltd., Tokyo, Japan) of
the Al12Mg17-B powder mixture at a pressure of 70 MPa and a temperature of 1400 ◦C.
The working chamber was evacuated to a vacuum level of 6 Pa. Mechanical pressure
was applied to the graphite die in the first minute of the sintering process and kept
constant throughout the process. The sample was heated from room temperature to
1400 ◦C at a heating rate of 50 ◦C min−1. The diameter and thickness of the obtained
samples were ~12.5 mm and 3 mm, respectively. The sintered sample was polished for
further research. The characteristics of the raw powders are given in Table 1. To obtain a
mixture of Al12Mg17-B, the powders of Al12Mg17 and amorphous black boron were mixed
in an atomic ratio of 2:14 and mechanically activated (MA) in a planetary mill (Activator
4M, Engineering Plant “Activator”, Ltd., Dorogino, Russia) for 3 h in an argon atmosphere
with a rotational frequency of 14 Hz. The mass ratio of grinding bodies to the powder
mixture was 3:1. The average size of the resulting Al12Mg17-B powder mixture was 400 nm.

Table 1. Characteristics of the raw powders.

Powder Average Particle Size Purity, %

Al12Mg17 15 µm ≥99.2
Amorphous B 600 nm ≥98.7

MA-Al12Mg17-B 400 nm ≥98.8

2.2. Brazilian Test

Tests at 24 ◦C and a loading rate of 0.75 mm/min were performed on an Instron 3369
double column testing machine. The specimens were placed in the testing machine between
flat plates such that the loading force was applied along the center line of the specimen base.
The ASTM D3967 (Brazilian test for brittle materials) recommended formula for calculating
the tensile strength of a test material is given below:

σt = 2P/πLD = 0.636P/LD
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where σt is the splitting stress (MPa), which is the value of the indirect tensile strength;
P—the maximum applied force (N), is selected from the maximum value of the exper-
imental curve “force–displacement”; L is the sample thickness (mm); D is the sample
diameter (mm).

2.3. Characterization

X-ray diffraction analysis of the obtained sample was performed using a Shimadzu
6000 diffractometer with CuKα radiation and using the PDF-4 (Powder Diffraction File)
database. The phase composition was refined using the Rietveld method. For this work,
the CASTEP program code [31] was used to calculate the energies of the referenced and
refined crystal lattices within the framework of the density functional theory (DFT). The
exchange–correlation potential was treated within the generalized gradient approximation
(GGA) using the Perdew–Burke–Ernzerhof (PBE-GGA) scheme [32]. A plane-wave cutoff
energy of 500 eV was used. The microstructure of the obtained sample was determined
using a QUANTA 3D microscope with energy dispersive spectroscopy (EDX). The density
of the sintered sample was calculated using the Archimedes method. The Vickers hardness
(HV) was determined using a Metolab-502 microhardness tester at a load of 1 kg (9.8 N).
The loading time was 10 s. Ten indentations were made from different places of the sample.

3. Results
3.1. Microstructure and Phase Composition of the Obtained AlMgB14 Ceramics

The results of the XRD analysis of the spark plasma sintered AlMgB14 sample are
shown in Figure 1. Analysis of the contributions to the weight intensity of individual phases
(Table 2, Figure 1) showed that in the obtained samples the main phases are AlMgB14
and MgAl2O4. The experimental XRD pattern (Figure 1, violet symbols) of the obtained
composite is closely approximated by the calculated integral intensity (Figure 1, black line);
the difference between them is insignificant (Figure 1, orange line).

Table 2. Structural parameters of lattices.

Phase State a, Å b, Å c, Å α = β = γ V, Å3 E, eV

AlMgB14
Reference 5.850 8.111 10.310 90 489.202 −8451.883
Refined 5.851 8.112 10.311 90 489.394 −8451.884

MgAl2O4 Reference 8.083 8.083 8.083 90 528.101 −22767.860
Refined 8.045 8.045 8.045 90 520.688 −22767.475

Using the Rietveld method, the quantitative content of the phases was determined.
It was found that the weight content of the AlMgB14 phase is dominant and amounts to
94 wt%, while the content of spinel MgAl2O4 in the obtained samples is no higher than
6 wt%. Structural parameters (a, b, c, α, β, γ) and the free energy (E) of the crystal lattices
of AlMgB14 and MgAl2O4 in both the reference and the refined states are given in Table 2.
As can be seen from Table 2, the structural parameters of the AlMgB14 lattice do not change.
At the same time, the lattice volume V of the MgAl2O4 spinel changes significantly from
528.101 (reference state) to 520.688 (refined state) Å3. The lattice energy of MgAl2O4 in the
refined state is higher than in the reference state, which indicates a lower lattice stability.
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of a dense homogeneous structure with inclusions of the oxide phase. According to the 
EDX results of the orange area in Figure 2, O, Al and Mg elements were found in the light 
areas (MgAl2O4 phase). In the dark areas, B, Al and Mg elements were found in the ratio 
corresponding to the AlMgB14 phase. EDX spectra are given in the Supplementary Mate-
rials. In the structure of the obtained sample, single pores with an average size of 3 μm 
were observed. The average grain size in the sintered samples is 3–5 μm. Based on the 
calculations using the Archimedes method, the relative density of the AlMgB14-based 
sample is 98.6% (if we take into account the 6% content of MgAl2O4 spinel, the theoretical 
density of the sample is 2.63 g/cm3). 

Figure 1. XRD patterns of the spark plasma sintered AlMgB14 samples: (a) 1—experimental
XRD pattern (violet symbols), 2—integral intensity found using the Rietveld method (black line),
3—difference between experimental and integral intensities (orange line); (b) theoretical XRD patterns
of the AlMgB14 and MgAl2O4 phases, found using the Rietveld method.

The microstructure of the sintered sample is shown in Figure 2. As can be seen from
Figure 2, spark plasma sintering of the Al12Mg17-B powder mixture leads to the formation
of a dense homogeneous structure with inclusions of the oxide phase. According to the
EDX results of the orange area in Figure 2, O, Al and Mg elements were found in the
light areas (MgAl2O4 phase). In the dark areas, B, Al and Mg elements were found in the
ratio corresponding to the AlMgB14 phase. EDX spectra are given in the Supplementary
Materials. In the structure of the obtained sample, single pores with an average size of
3 µm were observed. The average grain size in the sintered samples is 3–5 µm. Based on
the calculations using the Archimedes method, the relative density of the AlMgB14-based
sample is 98.6% (if we take into account the 6% content of MgAl2O4 spinel, the theoretical
density of the sample is 2.63 g/cm3).
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Figure 2. SEM images of the surface of the AlMgB14 sample.

3.2. Mechanical Properties of the Sintered Sample

The results of the hardness measurements of the obtained materials based on AlMgB14
are shown in Table 3. The average hardness of the obtained sample is 29 ± 0.88 GPa. The
reported values of microhardness of the AlMgB14-based materials are 27.87 ± 0.97 [14],
26.7 ± 2.2 [15] and 26.1 [16] GPa, respectively. Thus, the value obtained in this work is in
good agreement with the reported data [2,14–17,21,22].

Table 3. The results of measuring the hardness of the obtained sample.

Measurement Number/HV HVav, GPa

1 2 3 4 5 6 7 8 9 10 29.00 ± 0.88
2743.9 2795.6 2858.0 3050.8 2903.4 2805.4 2795.6 2931.3 3073.3 3073.3

Figure 3a shows the dependence of the change in the loading force applied to the
AlMgB14 sample on the displacement during the experiment for the Brazilian test at a
temperature of 24 ◦C and a loading rate of 0.75 mm/min (10−3 s−1). According to the
obtained results, the tensile strength of AlMgB14 is 56 MPa.
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Figure 3. (a) The dependence of the change in the loading force on the AlMgB14 sample, obtained
from the displacement during the experiment for the Brazilian test at a temperature of 24 ◦C and
a loading speed of 0.75 mm/min; (b) the appearance of the AlMgB14 sample, fractured after the
Brazilian test; (c) macro- and (d) micro-images of the fracture surface of the AlMgB14 sample.

4. Discussion

The appearance of the AlMgB14 sample, fractured after the Brazilian test, is shown
in Figure 3b. Analyzing the image of a fractured AlMgB14 sample after the Brazilian
test, we observe that the fracture is characterized by a single straight tensile crack that
splits the specimen along the compression line into two halves. This failure is considered
typical for loading conditions in the Brazilian test in terms of analytical strength theory
assumptions [33–35]. At the same time, in [36,37], the fracture of ceramic materials after
the Brazilian test was accompanied by a ternary fracture and multiple branching cracks.
Such a fracture pattern can be explained by the inhomogeneous phase composition, which
leads to dispersion strengthening due to inclusions with mechanical characteristics that
differ from the base material. Thus, the AlMgB14-based material obtained in this study has
a homogeneous phase composition, and therefore the fracture is characterized by a single
straight crack.

The SEM image of the fracture surface of the AlMgB14 sample and the integrated
elemental analysis of a typical microsection on the fracture surface are shown in Figure 3c,d.
The crack initiation region is marked with a white arrow in Figure 3c. The initiation of
a crack in the sample occurred not far from the central region of the sample, closer to
the loading point. Most of the fracture surface, except for the crack initiation area, is
relatively smooth without sharp drops and relief changes. Obviously, when under tension,
the crack grew without resistance in local centers, which indicates the homogeneity of the
composition and internal structure. The type of fracture can be characterized as a cleavage
fracture due to crack growth occurring in accordance with the transcrystalline scenario.
Multiple small fragments of the same elemental composition (Figure 3d) as the integral
composition of the material were found on the fracture surface, with a predominance
of Al, Mg and B chemical elements. The presence of other elements across the entire
fracture surface is determined at the level of error (Table 4). A small number of micropores
were also found, distributed evenly across the entire destruction surface with sizes not
exceeding 20 µm.
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Table 4. Results of the elemental analysis of a typical microsection on the fracture surface.

Element B Al Mg O Ti

Wt% 87.6 4.10 8.00 0.25 0.05

The tensile strength of the obtained AlMgB14-based material is in good agreement with
the tensile strength of the various ceramics studied in other works (Table 5). Apparently,
the lower tensile strength of AlMgB14 compared to other ceramics can be associated with
its complex low-symmetry orthorhombic crystal lattice and the presence of pores and
microdefects in its structure. At the same time, as can be seen from Table 5, the composite
material based on Al2O3–ZrO2 eutectic has the highest tensile strength. Due to the presence
of the second phase in the structure of the material and due to phase transformations in the
ZrO2 during destruction, the propagating cracks can branch and stop. In [2], a significant
increase in the hardness of AlMgB14-based materials was reported due to the introduction
of additives. With the addition of silicon, the hardness of AlMgB14 increased to 35 GPa;
with the addition of titanium diboride, it increased to 46 GPa. In [38], the authors reported
that AlMgB14 and TiB2 have an exceptionally strong bond due to very close values of
their surface energies. In AlMgB14–TiB2 composite materials, AlMgB14 provides both good
wetting and internal strength of the composite. In combination, these two borides can
provide a high degree of mutual enhancement [38]. Based on the above, in the future, it
will be of great interest to study the tensile strength of AlMgB14–TiB2 composite materials.

Table 5. Comparison of the tensile strength of AlMgB14 with other ceramics.

Material σt, MPa Reference

AlMgB14 56.0 This work
Al2O3–ZrO2(Y2O3) eutectics 80.0 [39]

HfB2 53.8 [40]
TiB2 60.2 [40]
ZrB2 53.3 [40]

5. Conclusions

In this work, the AlMgB14-based ceramic material was obtained by spark plasma
sintering. The mechanical properties, structure and phase composition were studied. The
AlMgB14 phase content in the obtained sample was 94 wt% with a spinel MgAl2O4 content
no higher than 6 wt%. According to the results of density and hardness measurements,
the relative density of the sintered AlMgB14-based material was 98.6% with an average
microhardness of 29 GPa. According to the results of the Brazilian test, the tensile strength
of AlMgB14 was 56 MPa. The fracture is characterized by a single straight tensile crack
that divides the sample along the compression line into two halves. The type of fracture of
the AlMgB14 sample can be characterized as a cleavage fracture due to its crack growth
appearing in accordance with the transcrystalline fracture. The tensile strength of the
obtained material is in good agreement with the tensile strength of boride and oxide
ceramics studied in other works.
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