25 research outputs found

    The fate of carbon in a mature forest under carbon dioxide enrichment

    Get PDF
    Atmospheric carbon dioxide enrichment (eCO2) can enhance plant carbon uptake and growth1 5, thereby providing an important negative feedback to climate change by slowing the rate of increase of the atmospheric CO2 concentration6. Although evidence gathered from young aggrading forests has generally indicated a strong CO2 fertilization effect on biomass growth3 5, it is unclear whether mature forests respond to eCO2 in a similar way. In mature trees and forest stands7 10, photosynthetic uptake has been found to increase under eCO2 without any apparent accompanying growth response, leaving the fate of additional carbon fixed under eCO2 unclear4,5,7 11. Here using data from the first ecosystem-scale Free-Air CO2 Enrichment (FACE) experiment in a mature forest, we constructed a comprehensive ecosystem carbon budget to track the fate of carbon as the forest responded to four years of eCO2 exposure. We show that, although the eCO2 treatment of +150 parts per million (+38 per cent) above ambient levels induced a 12 per cent (+247 grams of carbon per square metre per year) increase in carbon uptake through gross primary production, this additional carbon uptake did not lead to increased carbon sequestration at the ecosystem level. Instead, the majority of the extra carbon was emitted back into the atmosphere via several respiratory fluxes, with increased soil respiration alone accounting for half of the total uptake surplus. Our results call into question the predominant thinking that the capacity of forests to act as carbon sinks will be generally enhanced under eCO2, and challenge the efficacy of climate mitigation strategies that rely on ubiquitous CO2 fertilization as a driver of increased carbon sinks in global forests. © 2020, The Author(s), under exclusive licence to Springer Nature Limited

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Temperature Reduction in Urban Surface Materials through Tree Shading Depends on Surface Type Not Tree Species

    No full text
    Trees play a vital role in urban cooling. The present study tested if key canopy characteristics related to tree shade could be used to predict the cooling potential across a range of urban surface materials. During the austral summer of 2018–2019, tree and canopy characteristics of 471 free-standing trees from 13 species were recorded across Greater Sydney, Australia. Stem girth and tree height, as well as leaf area index and ground-projected crown area was measured for every tree. Surface temperatures were recorded between noon (daylight saving time) and 3:00 p.m. under the canopy of each tree in the shade and in full sun to calculate the temperature differential between adjacent sunlit and shaded surfaces (∆Ts). The limited control over environmental parameters was addressed by using a large number of randomly selected trees and measurement points of surface temperatures. Analyses revealed that no systematic relationship existed among canopy characteristics and ∆Ts for any surface material. However, highly significant differences (p < 0.001) in ∆Ts existed among surface materials. The largest cooling potential of tree shade was found by shading bark mulch (∆Ts = −24.8 °C ± 7.1), followed by bare soil (∆Ts = −22.1 °C ± 5.5), bitumen (∆Ts = −20.9 °C ± 5.8), grass (∆Ts = −18.5 °C ± 4.8) and concrete pavers (∆Ts = −17.5 °C ± 6.0). The results indicate that surface material, but not the tree species, matters for shade cooling of common urban surfaces. Shading bark mulch, bare soil or bitumen will provide the largest reductions in surface temperature, which in turn results in effective mitigation of radiant heat. This refined understanding of the capacity of trees to reduce thermal loads in urban space can increase the effectiveness of urban cooling strategies

    Close association of RGR, leaf and root morphology, seed mass and shade tolerance in seedlings of nine boreal tree species grown in high and low light

    No full text
    1. To test hypotheses concerning adaptation and acclimation of tree species to shaded habitats we determined the growth, biomass partitioning and morphology of seedlings of nine near-boreal tree species in high- and low-light greenhouse environment (25 and 5% of full sunlight, respectively), comparable to sunlit gap and shaded microsites in boreal forests. The species differ widely in shade tolerance, seed size and leaf life span. 2. In low light, all species allocated proportionally more biomass to stems and less to roots, but the same to foliage, compared with the high-light environment. At a common size, all species had finer leaf morphology (higher specific leaf area, SLA) but coarser root morphology (lower specific root length, SRL) in low than high light. From a whole plant perspective, all species enhanced leaf area per unit plant mass (leaf area ratio, LAR) in low light and root length per unit plant mass (root length ratio, RLR) in high light. 3. Shade-intolerant deciduous species had higher RGR, SLA and SRL than larger seeded evergreens: ranking from Populus, Betula and Larix spp., then to five evergreen Pinus, Picea and Thuja spp., which were generally comparable in these traits. There were no changes in growth rankings of species between high- and low-light environments, nor consistent differences among species in biomass partitioning. Hence, species differences in leaf and root morphology (SLA, SRL) drove whole plant patterns, such as Populus, Betula and Larix had greater total leaf area and root length per unit plant mass (LAR and RLR, respectively) than the evergreens. Interspecific variation in RGR in both high and low light was positively correlated (r ≃ 0.9) with SLA, SRL, LAR and RLR, and negatively correlated (r ≃ -0.9) to seed mass and leaf life span. 4. These data suggest that SLA, SRL, NAR and RGR are closely associated with variation in life-history traits and that variation in leaf and root structure more strongly influences patterns of RGR among species and light environments than does biomass partitioning

    Global variability in leaf respiration in relation to climate, plant functional types and leaf traits

    No full text
    Leaf dark respiration (R-dark) is an important yet poorly quantified component of the global carbon cycle. Given this, we analyzed a new global database of R-dark and associated leaf traits. Data for 899 species were compiled from 100 sites (from the Arctic to the tropics). Several woody and nonwoody plant functional types (PFTs) were represented. Mixed-effects models were used to disentangle sources of variation in R-dark. Area-based R-dark at the prevailing average daily growth temperature (T) of each siteincreased only twofold from the Arctic to the tropics, despite a 20 degrees C increase in growing T (8-28 degrees C). By contrast, R-dark at a standard T (25 degrees C, R-dark(25)) was threefold higher in the Arctic than in the tropics, and twofold higher at arid than at mesic sites. Species and PFTs at cold sites exhibited higher R-dark(25) at a given photosynthetic capacity (V-cmax(25)) or leaf nitrogen concentration ([N]) than species at warmer sites. R-dark(25) values at any given V-cmax(25) or [N] were higher in herbs than in woody plants. The results highlight variation in R-dark among species and across global gradients in T and aridity. In addition to their ecological significance, the results provide a framework for improving representation of R-dark in terrestrial biosphere models (TBMs) and associated land-surface components of Earth system models (ESMs)
    corecore