94 research outputs found

    Numerical Reconstruction of Ejector Rocket Experimental Tests

    Full text link
    Air ejector rocket systems, typical of combined cycle engines for space propulsion applications, have been studied within the ESA Future European Space Transportation Investigations Program. The description and validationof the computational fluid dynamics (CFD) algorithm that has been tuned to simulate the behavior of these systems, and the numerical rebuilding of the ejector rocket experimental tests that were carried out at TNO in The Netherlands are given. The computational developments being presented target the problem of turbulent mixing layer simulation, which is one of the leading phenomena that govern flow behavior inside an ejector rocket. Comparison between experimental and CFD data is given for two validation test cases: a two-dimensional turbulent mixing layer and an axysimmetric ejector in cold flow. Then, the numerical rebuilding of the ejector rocket experimental tests is presented, and the results are discussed with regard to the comparison between numerical and experimental data

    Induction of Autophagy by Cystatin C: A Mechanism That Protects Murine Primary Cortical Neurons and Neuronal Cell Lines

    Get PDF
    Cystatin C (CysC) expression in the brain is elevated in human patients with epilepsy, in animal models of neurodegenerative conditions, and in response to injury, but whether up-regulated CysC expression is a manifestation of neurodegeneration or a cellular repair response is not understood. This study demonstrates that human CysC is neuroprotective in cultures exposed to cytotoxic challenges, including nutritional-deprivation, colchicine, staurosporine, and oxidative stress. While CysC is a cysteine protease inhibitor, cathepsin B inhibition was not required for the neuroprotective action of CysC. Cells responded to CysC by inducing fully functional autophagy via the mTOR pathway, leading to enhanced proteolytic clearance of autophagy substrates by lysosomes. Neuroprotective effects of CysC were prevented by inhibiting autophagy with beclin 1 siRNA or 3-methyladenine. Our findings show that CysC plays a protective role under conditions of neuronal challenge by inducing autophagy via mTOR inhibition and are consistent with CysC being neuroprotective in neurodegenerative diseases. Thus, modulation of CysC expression has therapeutic implications for stroke, Alzheimer's disease, and other neurodegenerative disorders

    Intensive care unit discharge to the ward with a tracheostomy cannula as a risk factor for mortality: A prospective, multicenter propensity analysis

    Get PDF
    To analyze the impact of decannulation before intensive care unit discharge on ward survival in nonexperimental conditions. DESIGN: Prospective, observational survey. SETTING: Thirty-one intensive care units throughout Spain. PATIENTS: All patients admitted from March 1, 2008 to May 31, 2008. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: At intensive care unit discharge, we recorded demographic variables, severity score, and intensive care unit treatments, with special attention to tracheostomy. After intensive care unit discharge, we recorded intensive care unit readmission and hospital survival. STATISTICS: Multivariate analyses for ward mortality, with Cox proportional hazard ratio adjusted for propensity score for intensive care unit decannulation. We included 4,132 patients, 1,996 of whom needed mechanical ventilation. Of these, 260 (13%) were tracheostomized and 59 (23%) died in the intensive care unit. Of the 201 intensive care unit tracheostomized survivors, 60 were decannulated in the intensive care unit and 141 were discharged to the ward with cannulae in place. Variables associated with intensive care unit decannulation (non-neurologic disease [85% vs. 64%], vasoactive drugs [90% vs. 76%], parenteral nutrition [55% vs. 33%], acute renal failure [37% vs. 23%], and good prognosis at intensive care unit discharge [40% vs. 18%]) were included in a propensity score model for decannulation. Crude ward mortality was similar in decannulated and nondecannulated patients (22% vs. 23%); however, after adjustment for the propensity score and Sabadell Score, the presence of a tracheostomy cannula was not associated with any survival disadvantage with an odds ratio of 0.6 [0.3-1.2] (p=.1). CONCLUSION: In our multicenter setting, intensive care unit discharge before decannulation is not a risk factor

    Do hypoxia/normoxia culturing conditions change the neuroregulatory profile of Wharton Jelly mesenchymal stem cells secretome?

    Get PDF
    Introduction: The use of human umbilical cord Wharton Jelly-derived mesenchymal stem cells (hWJ-MSCs) has been considered a new potential source for future safe applications in regenerative medicine. Indeed, the application of hWJ-MSCs into different animal models of disease, including those from the central nervous system, has shown remarkable therapeutic benefits mostly associated with their secretome. Conventionally, hWJ-MSCs are cultured and characterized under normoxic conditions (21 % oxygen tension), although the oxygen levels within tissues are typically much lower (hypoxic) than these standard culture conditions. Therefore, oxygen tension represents an important environmental factor that may affect the performance of mesenchymal stem cells in vivo. However, the impact of hypoxic conditions on distinct mesenchymal stem cell characteristics, such as the secretome, still remains unclear. Methods: In the present study, we have examined the effects of normoxic (21 % O2) and hypoxic (5 % O2) conditions on the hWJ-MSC secretome. Subsequently, we address the impact of the distinct secretome in the neuronal cell survival and differentiation of human neural progenitor cells. Results: The present data indicate that the hWJ-MSC secretome collected from normoxic and hypoxic conditions displayed similar effects in supporting neuronal differentiation of human neural progenitor cells in vitro. However, proteomic analysis revealed that the use of hypoxic preconditioning led to the upregulation of several proteins within the hWJ-MSC secretome. Conclusions: Our results suggest that the optimization of parameters such as hypoxia may lead to the development of strategies that enhance the therapeutic effects of the secretome for future regenerative medicine studies and applications. © 2015 Teixeira et al.Portuguese Foundation for Science and Technology (FCT) (Ciência 2007 program and IF Development Grant (AJS); and pre-doctoral fellowships to FGT (SFRH/69637/ 2010) and SIA (SFRH/BD/81495/2011); Canada Research Chairs (LAB) and a SSE Postdoctoral Fellowship (KMP); The National Mass Spectrometry Network (RNEM) (REDE/1506/REM/2005); co-funded by Programa Operacional Regional do Norte (ON.2 – O Novo Norte), ao abrigo do Quadro de Referência Estratégico Nacional (QREN), através do Fundo Europeu de Desenvolvimento Regional (FEDER).info:eu-repo/semantics/publishedVersio

    Psicopatologia descritiva: aspectos histĂłricos e conceituais

    Full text link

    Système embarqué

    No full text
    CENB

    Species delimitation and DNA barcoding of Atlantic Ensis (Bivalvia, Pharidae)

    No full text
    Ensis Schumacher, 1817 razor shells occur at both sides of the Atlantic and along the Pacific coasts of tropical west America, Peru, and Chile. Many of them are marketed in various regions. However, the absence of clear autapomorphies in the shell and the sympatric distributions of some species often prevent a correct identification of specimens. As a consequence, populations cannot be properly managed, and edible species are almost always mislabelled along the production chain. In this work, we studied whether the currently accepted Atlantic Ensis morphospecies are different evolutionary lineages, to clarify their taxonomic status and enable molecular identifications through DNA barcoding. For this, we studied 109 specimens sampled at 27 sites, which were identified as belonging to nine of those morphospecies. We analysed nucleotide variation at four nuclear (18S, 5.8S, ITS1, and ITS2) and two mitochondrial (COI and 16S) regions, although the 18S and 5.8S regions were not informative at the species level and were not further considered. The phylogenetic trees and networks obtained supported all morphospecies as separately evolving lineages. Phylogenetic trees recovered Ensis at each side of the Atlantic as reciprocally monophyletic. Remarkably, we confirm the co-occurrence of the morphologically similar E. minor (Chenu, 1843) and E. siliqua (Linné, 1758) along the NW Iberian coast, a fact that has been often overlooked. In South America, a relevant divergence between E. macha (Molina, 1792) individuals from Chile and Argentina was unveiled and suggests incipient speciation. We also confirm the occurrence of the North American species E. directus (Conrad, 1843) as far south as north-eastern Florida. Among the genomic regions analysed, we suggest COI as the most suitable DNA barcode for Atlantic Ensis. Our results will contribute to the conservation and management of Ensis populations and will enable reliable identifications of the edible species, even in the absence of the valves. The name Ensis coseli Vierna nom. nov. is proposed to replace E. minor Dall, 1899 non (Chenu, 1843)
    • …
    corecore