46 research outputs found

    Decay in survival motor neuron and plastin 3 levels during differentiation of iPSC-derived human motor neurons

    Get PDF
    Spinal muscular atrophy (SMA) is a neuromuscular disease caused by mutations in Survival Motor Neuron 1 (SMN1), leading to degeneration of alpha motor neurons (MNs) but also affecting other cell types. Induced pluripotent stem cell (iPSC)-derived human MN models from severe SMA patients have shown relevant phenotypes. We have produced and fully characterized iPSCs from members of a discordant consanguineous family with chronic SMA. We differentiated the iPSC clones into ISL-1+/ChAT+ MNs and performed a comparative study during the differentiation process, observing significant differences in neurite length and number between family members. Analyses of samples from wild-type, severe SMA type I and the type IIIa/IV family showed a progressive decay in SMN protein levels during iPSC-MN differentiation, recapitulating previous observations in developmental studies. PLS3 underwent parallel reductions at both the transcriptional and translational levels. The underlying, progressive developmental decay in SMN and PLS3 levels may lead to the increased vulnerability of MNs in SMA disease. Measurements of SMN and PLS3 transcript and protein levels in iPSC-derived MNs show limited value as SMA biomarkers

    Genetic and expression studies of SMN2 gene in Russian patients with spinal muscular atrophy type II and III

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Spinal muscular atrophy (SMA type I, II and III) is an autosomal recessive neuromuscular disorder caused by mutations in the survival motor neuron gene (<it>SMN1</it>). <it>SMN2 </it>is a centromeric copy gene that has been characterized as a major modifier of SMA severity. SMA type I patients have one or two <it>SMN2 </it>copies while most SMA type II patients carry three <it>SMN2 </it>copies and SMA III patients have three or four <it>SMN2 </it>copies. The <it>SMN1 </it>gene produces a full-length transcript (FL-SMN) while <it>SMN2 </it>is only able to produce a small portion of the FL-SMN because of a splice mutation which results in the production of abnormal SMNΔ7 mRNA.</p> <p>Methods</p> <p>In this study we performed quantification of the <it>SMN2 </it>gene copy number in Russian patients affected by SMA type II and III (42 and 19 patients, respectively) by means of real-time PCR. Moreover, we present two families consisting of asymptomatic carriers of a homozygous absence of the <it>SMN1 </it>gene. We also developed a novel RT-qPCR-based assay to determine the FL-SMN/SMNΔ7 mRNA ratio as SMA biomarker.</p> <p>Results</p> <p>Comparison of the <it>SMN2 </it>copy number and clinical features revealed a significant correlation between mild clinical phenotype (SMA type III) and presence of four copies of the <it>SMN2 </it>gene. In both asymptomatic cases we found an increased number of <it>SMN2 </it>copies in the healthy carriers and a biallelic <it>SMN1 </it>absence. Furthermore, the novel assay revealed a difference between SMA patients and healthy controls.</p> <p>Conclusions</p> <p>We suggest that the <it>SMN2 </it>gene copy quantification in SMA patients could be used as a prognostic tool for discrimination between the SMA type II and SMA type III diagnoses, whereas the FL-SMN/SMNΔ7 mRNA ratio could be a useful biomarker for detecting changes during SMA pharmacotherapy.</p

    Longitudinal evaluation of SMN levels as biomarker for spinal muscular atrophy: results of a phase IIb double-blind study of salbutamol

    Get PDF
    BACKGROUND: Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder, due to the loss of function of the survival motor neuron (SMN1) gene. The first treatment for the condition, recently approved, is based on the reduction of exon 7 skipping in mRNAs produced by a highly homologous gene (SMN2). The primary objective of the present study was to evaluate the applicability of the dosage of SMN gene produts in blood, as biomarker for SMA, and the safety of oral salbutamol, a beta2-adrenergic agonist modulating SMN2 levels. METHODS: We have performed a 1-year multicentre, double-blind, placebo-controlled study with salbutamol in 45 adult patients with SMA. Patients assumed 4 mg of salbutamol or placebo/three times a day. Molecular tests were SMN2 copy number, SMN transcript and protein levels. We have also explored the clinical effect, by the outcome measures available at the time of study design. RESULTS: Thirty-six patients completed the study. Salbutamol was safe and well tolerated. We observed a significant and progressive increase in SMN2 full-length levels in peripheral blood of the salbutamol-treated patients (p<0.00001). The exploratory analysis of motor function showed an improvement in most patients. CONCLUSIONS: Our data demonstrate safety and molecular efficacy of salbutamol. We provide the first longitudinal evaluation of SMN levels (both transcripts and protein) in placebo and in response to a compound modulating the gene expression: SMN transcript dosage in peripheral blood is reliable and may be used as pharmacodynamic marker in clinical trials with systemic compounds modifying SMN2levels

    Self-oligomerization regulates stability of survival motor neuron protein isoforms by sequestering an SCF<sup>Slmb</sup> degron

    Get PDF
    Spinal muscular atrophy (SMA) is caused by homozygous mutations in human SMN1. Expression of a duplicate gene (SMN2) primarily results in skipping of exon 7 and production of an unstable protein isoform, SMNΔ7. Although SMN2 exon skipping is the principal contributor to SMA severity, mechanisms governing stability of survival motor neuron (SMN) isoforms are poorly understood. We used a Drosophila model system and label-free proteomics to identify the SCFSlmb ubiquitin E3 ligase complex as a novel SMN binding partner. SCFSlmb interacts with a phosphor degron embedded within the human and fruitfly SMN YG-box oligomerization domains. Substitution of a conserved serine (S270A) interferes with SCFSlmb binding and stabilizes SMNΔ7. SMA-causing missense mutations that block multimerization of full-length SMN are also stabilized in the degron mutant background. Overexpression of SMNΔ7S270A, but not wild-type (WT) SMNΔ7, provides a protective effect in SMA model mice and human motor neuron cell culture systems. Our findings support a model wherein the degron is exposed when SMN is monomeric and sequestered when SMN forms higher-order multimers

    Spinal Muscular Atrophy Type 3, Kugelberg-Welander Disease

    No full text

    Sustainable method for Alzheimer dementia prediction in mild cognitive impairment: Electroencephalographic connectivity and graph theory combined with apolipoprotein E

    No full text
    Objective: Mild cognitive impairment (MCI) is a condition intermediate between physiological brain aging and dementia. Amnesic-MCI (aMCI) subjects progress to dementia (typically to Alzheimer-Dementia = AD) at an annual rate which is 20 times higher than that of cognitively intact elderly. The present study aims to investigate whether EEG network Small World properties (SW) combined with Apo-E genotyping, could reliably discriminate aMCI subjects who will convert to AD after approximately a year. Methods: 145 aMCI subjects were divided into two sub-groups and, according to the clinical follow-up, were classified as Converted to AD (C-MCI, 71) or Stable (S-MCI, 74). Results: Results showed significant differences in SW in delta, alpha1, alpha2, beta2, gamma bands, with C-MCI in the baseline similar to AD. Receiver Operating Characteristic(ROC) curve, based on a first-order polynomial regression of SW, showed 57% sensitivity, 66% specificity and 61% accuracy(area under the curve: AUC=0.64). In 97 out of 145 MCI, Apo-E allele testing was also available. Combining this genetic risk factor with Small Word EEG, results showed: 96.7% sensitivity, 86% specificity and 91.7% accuracy(AUC=0.97). Moreover, using only the Small World values in these 97 subjects, the ROC showed an AUC of 0.63; the resulting classifier presented 50% sensitivity, 69% specificity and 59.6% accuracy. When different types of EEG analysis (power density spectrum) were tested, the accuracy levels were lower (68.86%). Interpretation: Concluding, this innovative EEG analysis, in combination with a genetic test (both low-cost and widely available), could evaluate on an individual basis with great precision the risk of MCI progression. This evaluation could then be used to screen large populations and quickly identify aMCI in a prodromal stage of dementia. Ann Neurol 2018 Ann Neurol 2018;84:302–314
    corecore