8 research outputs found

    Effects of plasma transfusion on hepcidin production in human congenital hypotransferrinemia

    Get PDF
    Hepcidin is the key regulator of systemic iron homeostasis. We describe the modulation of hepcidin production induced by plasma transfusions in a patient with congenital hypotransferrinemia that offers a unique model in which to study the mechanism of hepcidin regulation by iron and erythropoiesis. Urinary hepcidin increased from zero at baseline, when hemoglobin and serum transferrin was low, to a maximum of 98 ng/mg creatinine on day 60, and subsequently decreased. Time-course of urinary hepcidin and serum transferrin concentration suggests that hepcidin production is regulated by the combination of marrow iron requirements and iron supply by transferrin

    Abnormal B-Cell Maturation and Increased Transitional B Cells in CBL Syndrome

    Get PDF
    CBL syndrome is a Noonan-like RASopathy with heterogeneous clinical phenotype and predisposition to juvenile myelomonocytic leukemia (JMML). Here we describe two patients with identical germline CBL mutation and clinical and immune-hematological overlapping features with autoimmune lymphoproliferative syndrome (ALPS) and B-cell expansion with NF-κB and T-cell anergy (BENTA) syndrome. Increased immature/transitional B cells can be depicted in CBL syndrome, ALPS, and BENTA. Nonetheless, our patients here described showed peculiar B-cell phenotype due to increased immature/transitional CD34+ B cells. This feature differentiates CBL syndrome from BENTA, pointing toward an abnormal proliferation of B-cell early precursors

    Constitutional and somatic deletions of the Williams-Beuren syndrome critical region in Non-Hodgkin Lymphoma

    Get PDF
    Here, we report and investigate the genomic alterations of two novel cases of Non-Hodgkin Lymphoma (NHL) in children with Williams-Beuren syndrome (WBS), a multisystem disorder caused by 7q11.23 hemizygous deletion. Additionally, we report the case of a child with NHL and a somatic 7q11.23 deletion. Although the WBS critical region has not yet been identified as a susceptibility locus in NHL, it harbors a number of genes involved in DNA repair. The high proportion of pediatric NHL reported in WBS is intriguing. Therefore, the role of haploinsufficiency of genes located at 7q11.23 in lymphomagenesis deserves to be investigated

    Datasheet1_Pediatric immune myelofibrosis (PedIMF) as a novel and distinct clinical pathological entity.pdf

    No full text
    Myelofibrosis is a rare myeloproliferative disorder. The detailed descriptions of myelofibrosis in children and adolescents is limited to a few case series and case reports describing fewer than 100 patients, thus suggesting the extreme rarity of this condition prior to adulthood. Though pediatric patients rarely present the typical features and outcomes usually observed in older people, pediatric myelofibrosis is not considered an independent entity. Here we aim to describe patients with pediatric myelofibrosis, showing different clinical and pathological features when compared to the World Health Organization 2016 Primary Myelofibrosis classification. We retrospectively collected and analyzed 14 consecutive pediatric myelofibrosis diagnosed in our Pediatric hematology outpatient clinic over a six-year period. According to clinical data and bone marrow biopsy findings, patients were classified into three subgroups: adult-like myelofibrosis, pediatric immune myelofibrosis, idiopathic myelofibrosis. Pediatric Immune Myelofibrosis was the predominant subgroup in our cohort (7/14). Pediatric Immune Myelofibrosis is characterized by peculiar bone marrow features (i.e., T lymphocyte infiltration) and a milder course compared to the other patients Pediatric Immune Myelofibrosis is a novel and distinct pathological entity. We suggest to carefully consider Pediatric Immune Myelofibrosis in case of bone marrow biopsies showing myelofibrosis that do not fulfill WHO criteria.</p
    corecore