11 research outputs found

    The relation between amyotrophic lateral sclerosis and inorganic selenium in drinking water: a population-based case-control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A community in northern Italy was previously reported to have an excess incidence of amyotrophic lateral sclerosis among residents exposed to high levels of inorganic selenium in their drinking water.</p> <p>Methods</p> <p>To assess the extent to which such association persisted in the decade following its initial observation, we conducted a population-based case-control study encompassing forty-one newly-diagnosed cases of amyotrophic lateral sclerosis and eighty-two age- and sex-matched controls. We measured long-term intake of inorganic selenium along with other potentially neurotoxic trace elements.</p> <p>Results</p> <p>We found that consumption of drinking water containing ≥ 1 μg/l of inorganic selenium was associated with a relative risk for amyotrophic lateral sclerosis of 5.4 (95% confidence interval 1.1-26) after adjustment for confounding factors. Greater amounts of cumulative inorganic selenium intake were associated with progressively increasing effects, with a relative risk of 2.1 (95% confidence interval 0.5-9.1) for intermediate levels of cumulative intake and 6.4 (95% confidence interval 1.3-31) for high intake.</p> <p>Conclusion</p> <p>Based on these results, coupled with other epidemiologic data and with findings from animal studies that show specific toxicity of the trace element on motor neurons, we hypothesize that dietary intake of inorganic selenium through drinking water increases the risk for amyotrophic lateral sclerosis.</p

    Health and climate related ecosystem services provided by street trees in the urban environment

    Full text link

    Vertex-facet assignments for polytopes

    No full text

    Computing the Maximum Volume Inscribed Ellipsoid of a Polytopic Projection

    No full text
    We introduce a novel scheme based on a blending of Fourier-Motzkin elimination (FME) and adjustable robust optimization techniques to compute the maximum volume inscribed ellipsoid (MVE) in a polytopic projection. It is well-known that deriving an explicit description of a projected polytope is NP-hard. Our approach does not require an explicit description of the projection, and can easily be generalized to find a maximally sized convex body of a polytopic projection. Our obtained MVE is an inner approximation of the projected polytope, and its center is a centralized relative interior point of the projection. Since FME may produce many redundant constraints, we apply an LP-based procedure to keep the description of the projected polytopes at its minimal size. Furthermore, we propose an upper bounding scheme to evaluate the quality of the inner approximations. We test our approach on a simple polytope and a color tube design problem, and observe that as more auxiliary variables are eliminated, our inner approximations and upper bounds converge to optimal solutions
    corecore