7,897 research outputs found

    Investigation of chemically reacting and radiating supersonic internal flows

    Get PDF
    The two-dimensional spatially elliptic Navier-Stokes equations are used to investigate the chemically reacting and radiating supersonic flow of the hydrogen-air system between two parallel plates and in a channel with a ten degree compression-expansion ramp at the lower boundary. The explicit unsplit finite-difference technique of MacCormack is used to advance the governing equations in time until convergence is achieved. The chemistry source term in the species equation is treated implicitly to alleviate the stiffness associated with fast reactions. The tangent slab approximation is employed in the radiative flux formation. Both pseudo-gray and nongray models are used to represent the absorption characteristics of the participating species. Results obtained for specific conditions indicate that the radiative interaction can have a significant influence on the flow field

    Classical Electron Model with Negative Energy Density in Einstein-Cartan Theory of Gravitation

    Full text link
    Experimental result regarding the maximum limit of the radius of the electron \sim 10^{-16} cm and a few of the theoretical works suggest that the gravitational mass which is a priori a positive quantity in Newtonian mechanics may become negative in general theory of relativity. It is argued that such a negative gravitational mass and hence negative energy density also can be obtained with a better physical interpretation in the framework of Einstein-Cartan theory.Comment: 12 Latex pages, added refs and conclusion

    Investigation of radiative interactions in supersonic internal flows

    Get PDF
    Analyses and numerical procedures are presented to study the radiative interactions of absorbing emitting species in chemically reacting supersonic flow in various ducts. The 2-D time dependent Navier-Stokes equations in conjunction with radiative flux equation are used to study supersonic flows undergoing finite rate chemical reaction in a hydrogen air system. The specific problem considered is the flow of premixed radiating gas between parallel plates. Specific attention was directed toward studying the radiative contribution of H2O, OH, and NO under realistic physical and flow conditions. Results are presented for the radiative flux obtained for different gases and for various combination of these gases. The problem of chemically reacting and radiating flows was solved for the flow of premixed hydrogen-air through a 10 deg compression ramp. Results demonstrate that the radiative interaction increases with an increase in pressure, temperature, amount of participating species, plate spacing, and Mach number. Most of the energy, however, is transferred by convection in the flow direction. In general the results indicate that radiation can have a significant effect on the entire flow field

    Chemoviscosity modeling for thermosetting resins

    Get PDF
    A chemoviscosity model, which describes viscosity rise profiles accurately under various cure cycles, and correlates viscosity data to the changes of physical properties associated with structural transformations of the thermosetting resin system during cure, was established. Work completed on chemoviscosity modeling for thermosetting resins is reported

    Studies on chemoviscosity modeling for thermosetting resins

    Get PDF
    A new analytical model for simulating chemoviscosity of thermosetting resins has been formulated. The model is developed by modifying the well-established Williams-Landel-Ferry (WLF) theory in polymer rheology for thermoplastic materials. By introducing a relationship between the glass transition temperature Tg(t) and the degree of cure alpha(t) of the resin system under cure, the WLF theory can be modified to account for the factor of reaction time. Temperature dependent functions of the modified WLF theory constants C sub 1 (t) and C sub 2 (t) were determined from the isothermal cure data. Theoretical predictions of the model for the resin under dynamic heating cure cycles were shown to compare favorably with the experimental data. This work represents progress toward establishing a chemoviscosity model which is capable of not only describing viscosity profiles accurately under various cure cycles, but also correlating viscosity data to the changes of physical properties associated with the structural transformation of the thermosetting resin systems during cure

    On the robustness of ultra-high voltage 4H-SiC IGBTs with an optimized retrograde p-well

    Get PDF
    The robustness of ultra-high voltage (>10kV) SiC IGBTs comprising of an optimized retrograde p-well is investigated. Under extensive TCAD simulations, we show that in addition to offering a robust control on threshold voltage and eliminating punch-through, the retrograde is highly effective in terms of reducing the stress on the gate oxide of ultra-high voltage SiC IGBTs. We show that a 10 kV SiC IGBT comprising of the retrograde p-well exhibits a much-reduced peak electric field in the gate oxide when compared with the counterpart comprising of a conventional p-well. Using an optimized retrograde p-well with depth as shallow as 1 μm, the peak electric field in the gate oxide of a 10kV rated SiC IGBT can be reduced to below 2 MV.cm -1 , a prerequisite to achieve a high-degree of reliability in high-voltage power devices. We therefore propose that the retrograde p-well is highly promising for the development of>10kV SiC IGBTs
    corecore