7,900 research outputs found

    Tunable Hydrogen Storage in Magnesium - Transition Metal Compounds

    Get PDF
    Magnesium dihydride (\mgh) stores 7.7 weight % hydrogen, but it suffers from a high thermodynamic stability and slow (de)hydrogenation kinetics. Alloying Mg with lightweight transition metals (TM = Sc, Ti, V, Cr) aims at improving the thermodynamic and kinetic properties. We study the structure and stability of Mgx_xTM1x_{1-x}H2_2 compounds, x=[0x=[0-1], by first-principles calculations at the level of density functional theory. We find that the experimentally observed sharp decrease in hydrogenation rates for x0.8x\gtrsim0.8 correlates with a phase transition of Mgx_xTM1x_{1-x}H2_2 from a fluorite to a rutile phase. The stability of these compounds decreases along the series Sc, Ti, V, Cr. Varying the transition metal (TM) and the composition xx, the formation enthalpy of Mgx_xTM1x_{1-x}H2_2 can be tuned over the substantial range 0-2 eV/f.u. Assuming however that the alloy Mgx_xTM1x_{1-x} does not decompose upon dehydrogenation, the enthalpy associated with reversible hydrogenation of compounds with a high magnesium content (x=0.75x=0.75) is close to that of pure Mg.Comment: 8 pages, 5 figure

    Rotating light, OAM paradox and relativistic complex scalar field

    Full text link
    Recent studies show that the angular momentum, both spin and orbital, of rotating light beams possesses counter-intuitive characteristics. We present a new approach to the question of orbital angular momentum of light based on the complex massless scalar field representation of light. The covariant equation for the scalar field is treated in rotating system using the general relativistic framework. First we show the equivalence of the U(1) gauge current for the scalar field with the Poynting vector continuity equation for paraxial light, and then apply the formalism to the calculation of the orbital angular momentum of rotating light beams. If the difference between the co-, contra-, and physical quantities is properly accounted for there does not result any paradox in the orbital angular momentum of rotating light. An artificial analogue of the paradoxical situation could be constructed but it is wrong within the present formalism. It is shown that the orbital angular momentum of rotating beam comprising of modes with opposite azimuthal indices corresponds to that of rigid rotation. A short review on the electromagnetism in noninertial systems is presented to motivate a fully covariant Maxwell field approach in rotating system to address the rotating light phenomenon.Comment: No figure

    Relativity and EPR Entanglement: Comments

    Get PDF
    Recent experiment by Zhinden et al (Phys. Rev {\bf A} 63 02111, 2001) purports to test compatibility between relativity and quantum mechanics in the classic EPR setting. We argue that relativity has no role in the EPR argument based solely on non-relativistic quantum formalism. It is suggested that this interesting experiment may have significance to address fundamental questions on quantum probability.Comment: 6 pages, no figure; Submitted to Phys. Rev.

    Frontier Orbital and Conformational Analysis of a Nematic Liquid Crystal: 4-n-heptyloxy-4´-cyanobiphenyl

    Get PDF
    687-689The 4-n-heptyloxy-4´-cyanobiphenyl (7OCB) is a member of 4-n-alkoxy-4´-cyanobiphenyl homologous series. This liquid crystal series is well known for its electro-optical properties. The 7OCB compound transforms from crystal to nematic at 53.5°C and nematic to isotropic phase at 75.0°C. Using Hartree-Fock and DFT methods with 6-31G(d,p) basis set, molecular geometry, conformational analysis, electronic structure, MEP, HOMO-LUMO surfaces and molecular parameters of 7OCB molecular system have been investigated. Efforts have been made to elucidate the physico-chemical properties of the 7OCB liquid crystal

    Controlling the Ultrafast Dynamics of HD+ by the Carrier-Envelope Phases of an Ultrashort Laser Pulse: A Quasi-Classical Dynamics Study

    Get PDF
    A theoretical study on the coupled electron-nuclear dynamics of HD+ molecular ions under ultrashort, intense laser pulses is performed by employing a well-established quasi-classical model. The influence of the laser carrier-envelope phase on various channel (H + D+, D + H+, and H+ + D+) probabilities is investigated at different laser field intensities. The carrier-envelope phase is found to govern the dissociation (H + D+ and D + H+) and Coulomb explosion (H+ + D+) channel probabilities. The kinetic energy release distributions of the fragments are also found to be sensitive to the carrier-envelope phase of the laser pulse. Our results are in agreement with the previously reported quantum dynamics studies and experiments

    Magnonic Crystal with Two-Dimensional Periodicity as a Waveguide for Spin Waves

    Get PDF
    We describe a simple method of including dissipation in the spin wave band structure of a periodic ferromagnetic composite, by solving the Landau-Lifshitz equation for the magnetization with the Gilbert damping term. We use this approach to calculate the band structure of square and triangular arrays of Ni nanocylinders embedded in an Fe host. The results show that there are certain bands and special directions in the Brillouin zone where the spin wave lifetime is increased by more than an order of magnitude above its average value. Thus, it may be possible to generate spin waves in such composites decay especially slowly, and propagate especially large distances, for certain frequencies and directions in k{\bf k}-space.Comment: 13 pages, 4 figures, submitted to Phys Rev

    Stochastic Lag Time in Nucleated Linear Self-Assembly

    Full text link
    Protein aggregation is of great importance in biology, e.g., in amyloid fibrillation. The aggregation processes that occur at the cellular scale must be highly stochastic in nature because of the statistical number fluctuations that arise on account of the small system size at the cellular scale. We study the nucleated reversible self-assembly of monomeric building blocks into polymer-like aggregates using the method of kinetic Monte Carlo. Kinetic Monte Carlo, being inherently stochastic, allows us to study the impact of fluctuations on the polymerisation reactions. One of the most important characteristic features in this kind of problem is the existence of a lag phase before self-assembly takes off, which is what we focus attention on. We study the associated lag time as a function of the system size and kinetic pathway. We find that the leading order stochastic contribution to the lag time before polymerisation commences is inversely proportional to the system volume for large-enough system size for all nine reaction pathways tested. Finite-size corrections to this do depend on the kinetic pathway

    Relativistic anisotropic charged fluid spheres with varying cosmological constant

    Full text link
    Static spherically symmetric anisotropic source has been studied for the Einstein-Maxwell field equations assuming the erstwhile cosmological constant Λ \Lambda to be a space-variable scalar, viz., Λ=Λ(r) \Lambda = \Lambda(r) . Two cases have been examined out of which one reduces to isotropic sphere. The solutions thus obtained are shown to be electromagnetic in origin as a particular case. It is also shown that the generally used pure charge condition, viz., ρ+pr=0 \rho + p_r = 0 is not always required for constructing electromagnetic mass models.Comment: 15 pages, 3 eps figure

    Diffusion in bcc Transition Metals

    Get PDF
    Diffusion in metals and alloys is a defect contro-lled process. It occurs as a result of solvent (solute) atom-vacency exchange in the matrix. Diffusion can also occur along short circuiting paths like dislocations or grain boundaries. In all these cases the temperature dep-endence of diffusivity follows an Arrhanious relationship i.e.log D vs l/t plot is linear. The diffusivity is writt-en as D=Do exp(-Q/rt) where D0 and Q are frequency factor and activation energy for diffusion
    corecore