11,346 research outputs found
Classical Electron Model with Negative Energy Density in Einstein-Cartan Theory of Gravitation
Experimental result regarding the maximum limit of the radius of the electron
\sim 10^{-16} cm and a few of the theoretical works suggest that the
gravitational mass which is a priori a positive quantity in Newtonian mechanics
may become negative in general theory of relativity. It is argued that such a
negative gravitational mass and hence negative energy density also can be
obtained with a better physical interpretation in the framework of
Einstein-Cartan theory.Comment: 12 Latex pages, added refs and conclusion
Evaluating the Chinese Revised Controlling Behaviors Scale (C-CBS-R)
The present study evaluated the utility of the Chinese version of the Revised Controlling Behaviors Scale (C-CBS-R) as a measure of controlling behaviors in violent Chinese intimate relationships. Using a mixed-methods approach, in-depth, individual interviews were conducted with 200 Chinese women survivors to elicit qualitative data about their personal experiences of control in intimate relationships. The use of controlling behaviors was also assessed using the C-CBS-R. Interview accounts suggested that the experiences of 91 of the women were consistent with the description of coercive control according to Dutton and Goodman’s (2005) conceptualization of coercion. Using the split-half validation procedure, a receiver operating characteristics (ROC) curve analysis was conducted with the first half of the sample. The area under the curve (AUC) for using the C-CBS-R to identify high control was .99, and the cutoff score of 1.145 maximized both sensitivity and specificity. Applying the cutoff score to the second half gave a sensitivity of 96% and a specificity of 95%. Overall, the C-CBS-R has demonstrated utility as a measure of controlling behaviors with a cutoff score for distinguishing high from low levels of control in violent Chinese intimate relationships
Mercury or Mercury Free Restorations in Oral Cavity
Amalgam is basically a concoction of metals that has been used as a potent filling material in dentistry for the last 150 years. Amalgam usually consists of silver, mercury, tin and copper. Dental amalgam is a material used to fill cavities of tooth. Over the years, amalgam has become a topic of concern because it contains mercury. Mercury is a naturally occurring metal in the environment. Mercury exists as a liquid in room temperature but when heated, it becomes a gas. Flexibility of amalgam as a filling material is due Mercury. An alloy powder, a compound that is soft in nature when mixed with mercury makes it enough to mix and condense into the tooth. It hardens quickly and offers strong resistance to the forces of biting and chewing. There are studies reported on the safety of amalgam fillings. In 2005, European Union launched a comprehensive mercury strategy to reduce use of mercury. In 2008, countries like Norway and Denmark restricted the use of dental amalgam containing mercury. In 2009, this research was evaluated by U.S. Food and Drug Administration (FDA) and found no rationale to limit the use of amalgam. There are certain restorative materials that are available commercially that are mercury free in nature like Gold, Porcelain, Gallium alloys, Composite resin restoratives etc. They offer many advantages over amalgams containing mercury like: seals the dentin from future decay, reinforces remaining tooth structure, provides smooth and bonded margins, conservative and it blends naturally
Many-body approach to low-lying collective excitations in a BEC approaching collapse
An approximate many-body theory incorporating two-body correlations has been
employed to calculate low-lying collective multipole frequencies in a
Bose-Einstein condensate containing bosons, for different values of the
interaction parameter . Significant difference
from the variational estimate of the Gross-Pitaevskii equation has been found
near the collapse region. This is attributed to two-body correlations and
finite range attraction of the realistic interatomic interaction. A large
deviation from the hydrodynamic model is also seen for the second monopole
breathing mode and the quadrupole mode for large positive .Comment: 8 pages, 2 figure
Mitochondria as a Potential Antifungal Target for Isocyanide Compounds
The discovery of antibiotics and antifungals greatly impacted medicine and human health, allowing the effective treatment of infections that were previously deadly. However, due to routine and sometimes excessive usage of these compounds, the development of antimicrobial resistance has created a need for new antibiotic and antifungal compounds. Isocyanide compounds have been shown to have antibacterial, antifungal, and anti-cancer properties, but very little is known about their biochemical effects. Our research aims to understand the mechanism of action of isocyanide compounds. We have conducted a genetic screen of a Saccharomyces gene-deletion (“knockout”) collection on media containing an easily synthesized model isocyanide compound, para-nitrophenyl isocyanide (p-NPIC). This allowed us to identify genes which, when deleted, render the mutant strains resistant or hypersensitive to the compound. Based on our genetic screen for hypersensitive mutants, we hypothesize that the isocyanides impact mitochondrial function, specifically altering the function of the Cu++-containing respiratory complex, Cytochrome C Oxidase (Complex IV). Our findings provide new information on the mechanism(s) of action of this class of antimicrobials and will help guide the development of new molecules based on lead-compounds such as p-NPIC
- …