2,409 research outputs found

    `Unhinging' the surfaces of higher-order topological insulators and superconductors

    Full text link
    We show that the chiral Dirac and Majorana hinge modes in three-dimensional higher-order topological insulators (HOTIs) and superconductors (HOTSCs) can be gapped while preserving the protecting C2nT\mathsf{C}_{2n}\mathcal T symmetry upon the introduction of non-Abelian surface topological order. In both cases, the topological order on a single side surface breaks time reversal symmetry, but appears with its time-reversal conjugate on alternating sides in a C2nT\mathsf{C}_{2n}\mathcal T preserving pattern. In the absence of the HOTI/HOTSC bulk, such a pattern necessarily involves gapless chiral modes on hinges between C2nT\mathsf{C}_{2n}\mathcal T-conjugate domains. However, using a combination of KK-matrix and anyon condensation arguments, we show that on the boundary of a 3D HOTI/HOTSC these topological orders are fully gapped and hence `anomalous'. Our results suggest that new patterns of surface and hinge states can be engineered by selectively introducing topological order only on specific surfaces

    Optical matrix elements in tight-binding models with overlap

    Full text link
    We investigate the effect of orbital overlap on optical matrix elements in empirical tight-binding models. Empirical tight-binding models assume an orthogonal basis of (atomiclike) states and a diagonal coordinate operator which neglects the intra-atomic part. It is shown that, starting with an atomic basis which is not orthogonal, the orthogonalization process induces intra-atomic matrix elements of the coordinate operator and extends the range of the effective Hamiltonian. We analyze simple tight-binding models and show that non-orthogonality plays an important role in optical matrix elements. In addition, the procedure gives formal justification to the nearest-neighbor spin-orbit interaction introduced by Boykin [Phys. Rev \textbf{B} 57, 1620 (1998)] in order to describe the Dresselahaus term which is neglected in empirical tight-binding models.Comment: 16 pages 6 figures, to appear in Phys. Rev.

    Electronic and optical properties of beryllium chalcogenides/silicon heterostructures

    Full text link
    We have calculated electronic and optical properties of Si/BeSe0.41_{0.41}Te0.59_{0.59} heterostructures by a semiempirical sp3ssp^{3}s^{*} tight-binding method. Tight-binding parameters and band bowing of BeSe0.41_{0.41}Te0.59_{0.59} are considered through a recent model for highly mismatched semiconductor alloys. The band bowing and the measurements of conduction band offset lead to a type II heterostucture for Si/BeSe0.41_{0.41}Te0.59_{0.59} with conduction band minimum in the Si layer and valence band maximum in the BeSe0.41_{0.41}Te0.59_{0.59} layer. The electronic structure and optical properties of various (Si2)n_{2})_{n }/(BeSe0.41_{0.41}Te0.59)m_{0.59})_{m} [001] superlattices have been considered. Two bands of interface states were found within the bandgap of bulk Si. Our calculations indicate that the optical edges are below the fundamental bandgap of bulk Si and the transitions are optically allowed.Comment: 16 pager, 7 figure

    One-nucleon transfer reactions and the optical potential

    Full text link
    We provide a summary of new developments in the area of direct reaction theory with a particular focus on one-nucleon transfer reactions. We provide a status of the methods available for describing (d,p) reactions. We discuss the effects of nonlocality in the optical potential in transfer reactions. The results of a purely phenomenological potential and the optical potential obtained from the dispersive optical model are compared; both point toward the importance of including nonlocality in transfer reactions explicitly. Given the large ambiguities associated with optical potentials, we discuss some new developments toward the quantification of this uncertainty. We conclude with some general comments and a brief account of new advances that are in the pipeline.Comment: 7 pages, 5 figures, proceedings for the 14th International Conference on Nuclear Reaction Mechanisms, Varenna, June 201

    Anomalous gapped boundaries between surface topological orders in higher-order topological insulators and superconductors with inversion symmetry

    Full text link
    We show that the gapless boundary signatures—namely, chiral/helical hinge modes or localized zero modes—of three-dimensional higher-order topological insulators and superconductors with inversion symmetry can be gapped without symmetry breaking upon the introduction of non-Abelian surface topological order. In each case, the fractionalization pattern that appears on the surface is “anomalous” in the sense that it can be made consistent with symmetry only on the surface of a three-dimensional higher-order insulator/superconductor. Our results show that the interacting manifestation of higher-order topology is the appearance of “anomalous gapped boundaries” between distinct topological orders whose quasiparticles are related by inversion, possibly in conjunction with other protecting symmetries such as time-reversal symmetry and charge conservation

    Breakdown of Lindstedt Expansion for Chaotic Maps

    Full text link
    In a previous paper of one of us [Europhys. Lett. 59 (2002), 330--336] the validity of Greene's method for determining the critical constant of the standard map (SM) was questioned on the basis of some numerical findings. Here we come back to that analysis and we provide an interpretation of the numerical results by showing that no contradiction is found with respect to Greene's method. We show that the previous results based on the expansion in Lindstedt series do correspond to the transition value but for a different map: the semi-standard map (SSM). Moreover, we study the expansion obtained from the SM and SSM by suppressing the small divisors. The first case turns out to be related to Kepler's equation after a proper transformation of variables. In both cases we give an analytical solution for the radius of convergence, that represents the singularity in the complex plane closest to the origin. Also here, the radius of convergence of the SM's analogue turns out to be lower than the one of the SSM. However, despite the absence of small denominators these two radii are lower than the ones of the true maps for golden mean winding numbers. Finally, the analyticity domain and, in particular, the critical constant for the two maps without small divisors are studied analytically and numerically. The analyticity domain appears to be an perfect circle for the SSM analogue, while it is stretched along the real axis for the SM analogue yielding a critical constant that is larger than its radius of convergence.Comment: 12 pages, 3 figure

    Incoherent broadband cavity-enhanced absorption spectroscopy in the near-ultraviolet: application to HONO and NO2

    Get PDF
    The first application of incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS) in the near-ultraviolet for the simultaneous detection of two key atmospheric trace species, HONO and NO2, is reported. For both compounds the absorption is measured between 360 and 380 nm with a compact cavity-enhanced spectrometer employing a high power light-emitting diode. Detection limits of similar to 4 ppbv for HONO and similar to 14 ppbv for NO2 are reported for a static gas cell setup using a 20 s acquisition time. Based on an acquisition time of 10 min and an optical cavity length of 4.5 m detection limits of similar to 0.13 ppbv and similar to 0.38 ppbv were found for HONO and NO2 in a 4 m(3) atmospheric simulation chamber, demonstrating the usefulness of this approach for in situ monitoring of these important species in laboratory studies or field campaigns

    Experiences and perceptions of students with disabilities concerning factors influencing participation in recreational sport at a University in Western Cape Province , South Africa

    Get PDF
    South African universities share a common purpose to make sport and recreation accessible to students at higher education institutions, including students with disabilities.Therefore, integrating students with disabilities into the daily activities of any university institution is important as it may be beneficial for them to participate in recreational activities on campus. This study focuses on the experiences and perceptions of students with disabilities regarding recreational sport whilst at university. A qualitative methodological framework was employed. A sample of five students with disabilities was purposefully selected and face-to-face interviews as well as follow-up telephonic interviews were arranged. A list of cue questions guided the interview to ensure it flowed logically. Interviews were tape recorded (with written consent from participants) and transcribed verbatim. The data from the interviews were analysed using thematic data analysis. Physical, social and managerial constraints are not the only forms of inaccessibility, experience and perceptions, also play a role towards recreational sport participation for students with disabilities. The findings of this study indicated that the benefits of active participation lead to increased cognitive awareness and expression of internal motivation to pursue recreational sport on campus. The findings also denote that being coerced into sports and skill level leading to intimidation are factors that inhibit the pursuit for active leisure participation. This study lends itself to a fresh understanding of how to better cater for recreational sporting needs of university students with disabilities.Department of HE and Training approved lis

    High sensitivity in situ monitoring of NO3 in an atmospheric simulation chamber using incoherent broadband cavity-enhanced absorption spectroscopy

    Get PDF
    We describe the application of incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS) for the in situ detection of atmospheric trace gases and radicals (NO3, NO2, O-3, H2O) in an atmospheric simulation chamber under realistic atmospheric conditions. The length of the optical cavity across the reaction chamber is 4.5 m, which is significantly longer than in previous studies that use high finesse optical cavities to achieve high absorption sensitivity. Using a straightforward spectrometer configuration, we show that detection limits corresponding to typical atmospheric concentrations can be achieved with a measurement time of seconds to a few minutes. In particular, with only moderate reflectivity mirrors, we report a measured sensitivity of 4 pptv to NO3 in a 1 min acquisition time. The high spatial and temporal resolution of the IBBCEAS method and its pptv sensitivity to NO3 makes it useful in laboratory studies of atmospheric processes as well as having obvious potential for field measurements.We describe the application of incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS) for the in situ detection of atmospheric trace gases and radicals (NO3, NO2, O-3, H2O) in an atmospheric simulation chamber under realistic atmospheric conditions. The length of the optical cavity across the reaction chamber is 4.5 m, which is significantly longer than in previous studies that use high finesse optical cavities to achieve high absorption sensitivity. Using a straightforward spectrometer configuration, we show that detection limits corresponding to typical atmospheric concentrations can be achieved with a measurement time of seconds to a few minutes. In particular, with only moderate reflectivity mirrors, we report a measured sensitivity of 4 pptv to NO3 in a 1 min acquisition time. The high spatial and temporal resolution of the IBBCEAS method and its pptv sensitivity to NO3 makes it useful in laboratory studies of atmospheric processes as well as having obvious potential for field measurements
    corecore