1,343 research outputs found
Realization of potential of enterprise structure development as the criterion of ensuring the object-differentiated approach to rendering the state support : the Russian Federation
The objective of the research. Undertaken in the conditions of an economic crisis and sanctions restrictions the attempts of system optimization of business activity state regulation in Russia still don't contribute to increase in business sector efficiency and to full accomplishment of all assigned social and economic functions.
In the article the author rationalizes the point, assuming that in the basis of state regulation system the implementation level of entrepreneurial structure capacity, as the most adequate criterion of rendering the state support of business activity, which besides shall carry an object-differentiated nature, shall be laid.
Short description of methodology. In the article authors offer an original interpretation of the concept "potential of enterprise structure development" and a method to calculate an indicator "the realization level of potential of enterprise structure development" as key criterion at realizing an object-differentiated approach to rendering the state support of enterprise structures.
Compilation of the most important research results and their significance. In the article based on the formed differentiation criteria of measures of the state support of entrepreneurial structures authors offer the measures system differentiated on the bases of the implementation level of potential of entrepreneurial structures development and the importance of this structure in strategic priorities system of territorial development on preferential creation of institutional conditions for an entrepreneurship development; on internal capacity development of entrepreneurial structures; on direct support of business activity.peer-reviewe
Low-Temperature Optical Characterization of Single CdS Nanowires
We use spatially resolved micro-PL imaging at low temperature to study
optical properties of two sets of CdS nanowires grown using 20 nm and 50 nm
catalysts. We find that low temperature PL of single nanowires is an ideal
technique to gauge the quality of a given growth run, and moreover enables the
collection of detailed spatial information on single wire electronic states.Comment: IEEE Nano 2006 Proceeding
Temperature dependent photoluminescence of single CdS nanowires
Temperature dependent photoluminescence (PL) is used to study the electronic
properties of single CdS nanowires. At low temperatures, both near-band edge
(NBE) photoluminescence (PL) and spatially-localized defect-related PL are
observed in many nanowires. The intensity of the defect states is a sensitive
tool to judge the character and structural uniformity of nanowires. As the
temperature is raised, the defect states rapidly quench at varying rates
leaving the NBE PL which dominates up to room temperature. All PL lines from
nanowires follow closely the temperature-dependent band edge, similar to that
observed in bulk CdS.Comment: 11 pages, 4 figure
Low temperature photoluminescence imaging and time-resolved spectroscopy of single CdS nanowires
Time-resolved photoluminescence (PL) and micro-PL imaging were used to study
single CdS nanowires at 10 K. The low-temperature PL of all CdS nanowires
exhibit spectral features near energies associated with free and bound exciton
transitions, with the transition energies and emission intensities varying
along the length of the nanowire. In addition, several nanowires show spatially
localized PL at lower energies which are associated with morphological
irregularities in the nanowires. Time-resolved PL measurements indicate that
exciton recombination in all CdS nanowires is dominated by non-radiative
recombination at the surface of the nanowires.Comment: 9 pages, 3 figures, to be published in Applied Physics Letter
Frequencies of wave packets of whistler-mode chorus inside its source region: a case study
Whistler-mode chorus is a structured wave emission observed in the Earth's magnetosphere in a frequency range from a few hundreds of Hz to several kHz. We investigate wave packets of chorus using high-resolution measurements recorded by the WBD instrument on board the four Cluster spacecraft. A night-side chorus event observed during geomagnetically disturbed conditions is analyzed. We identify lower and upper frequencies for a large number of individual chorus wave packets inside the chorus source region. We investigate how these observations are related to the central position of the chorus source which has been previously estimated from the Poynting flux measurements. We observe typical frequency bandwidths of chorus of approximately 10% of the local electron cyclotron frequency. Observed time scales are around 0.1 s for the individual wave packets. Our results indicate a lower occurrence probability for lower frequencies in the vicinity of the central position of the source compared to measurements recorded closer to the outer boundaries of the source. This is in agreement with recent research based on the backward wave oscillator theory
Observations of the relationship between frequency sweep rates of chorus wave packets and plasma density
International audience[1] Chorus emissions are generated by a nonlinear mechanism involving wave‐particle interactions with energetic electrons. Discrete chorus wave packets are narrowband tones usually rising (sometimes falling) in frequency. We investigate frequency sweep rates of chorus wave packets measured by the Wideband data (WBD) instrument onboard the Cluster spacecraft. In particular, we study the relationship between the sweep rates and the plasma density measured by the WHISPER active sounder. We have observed increasing values of the sweep rate for decreasing plasma densities. We have compared our results with results of simulations of triggered emissions as well as with estimates based on the backward wave oscillator model for chorus emissions. We demonstrate a reasonable agreement of our experimental results with theoretical ones. Citation: Macúšová, E., et al. (2010), Observations of the relationship between frequency sweep rates of chorus wave packets and plasma density
Spectral features of lightning-induced ion cyclotron waves at low latitudes: DEMETER observations and simulation
International audience[1] We use a comprehensive analysis of 6-component ELF wave data from the DEMETER satellite to study proton whistlers, placing emphasis on low-latitude events originating from lightning strokes in the hemisphere opposite to the hemisphere of observation. In this case, the formation of proton whistlers does not involve mode conversion caused by a strong mode coupling at a crossover frequency, although a polarization reversal remains an important element in formation of the phenomenon. DEMETER measurements of the six electromagnetic field components in the frequency band below 1000 Hz make it possible to determine not only the dynamic spectrum, but also the wave polarization, the wave normal angle, and the normalized parallel component of the Poynting vector. This permits us to address fine features of proton whistlers, in particular, we show that the deviation of the upper cutoff frequency from the equatorial cyclotron frequency is related to the Doppler shift. Experimental study of proton whistlers is supplemented by an investigation of ion cyclotron wave propagation in a multicomponent magnetoplasma and by numerical modeling of spectrograms, both in the frame of geometrical optics
The relationship between auroral hiss at high altitudes over the polar caps and the substorm dynamics of aurora
Strong variations of intensity and cutoff frequency of the auroral hiss were observed by INTERBALL-2 and POLAR satellites at high altitudes, poleward from the auroral oval. The hiss intensifications are correlated with the auroral activations during substorms and/or pseudo-breakups. The low cutoff frequency of auroral hiss increases with the distance between the aurora and the satellite footprint. Multicomponent wave measurements of the hiss emissions on board the POLAR spacecraft show that the horizontal component of the Poynting flux of auroral hiss changes its direction in good accordance with longitudinal displacements of the bright auroras. The vertical component of the Poynting flux is directed upward from the aurora region, indicating that hiss could be generated by upgoing electron beams. This relationship between hiss and the aurora dynamics means that the upgoing electron beams are closely related to downgoing electron beams which produce the aurora. During the auroral activations the upgoing and downgoing beams move and change their intensities simultaneously.<br><br> <b>Keywords.</b> Magnetospheric physics (Auroral phenomena; Plasma waves and instabilities; Storms and substorms
- …
