139 research outputs found
Bogoliubov Coefficients of 2D Charged Black Holes
We exactly calculate the thermal distribution and temperature of Hawking
radiation for a two-dimensional charged dilatonic black hole after it has
settled down to an "equilibrium" state. The calculation is carried out using
the Bogoliubov coefficients. The background of the process is furnished by a
preexisting black hole and not by collapsing matter as considered by Giddings
and Nelson for the case of a Schwarzschild black hole. Furthermore, the
vanishing of the temperature and/or the Hawking radiation in the extremal case
is obtained as a regular limit of the general case.Comment: 9 pages, 1 eps figur
Bagchi's Theorem for families of automorphic forms
We prove a version of Bagchi's Theorem and of Voronin's Universality Theorem
for family of primitive cusp forms of weight and prime level, and discuss
under which conditions the argument will apply to general reasonable family of
automorphic -functions.Comment: 15 page
The size of Selmer groups for the congruent number problem, II
The oldest problem in the theory of elliptic curves is to determine which positive integers D can be the common difference of a three term arithmetic progres-sion of squares of rational numbers. Such integers D are known as congruent numbers. Equivalently one may ask which elliptic curve
Completeness of the Coulomb scattering wave functions
Completeness of the eigenfunctions of a self-adjoint Hamiltonian, which is
the basic ingredient of quantum mechanics, plays an important role in nuclear
reaction and nuclear structure theory. However, until now, there was no a
formal proof of the completeness of the eigenfunctions of the two-body
Hamiltonian with the Coulomb interaction. Here we present the first formal
proof of the completeness of the two-body Coulomb scattering wave functions for
repulsive unscreened Coulomb potential. To prove the completeness we use the
Newton's method [R. Newton, J. Math Phys., 1, 319 (1960)]. The proof allows us
to claim that the eigenfunctions of the two-body Hamiltonian with the potential
given by the sum of the repulsive Coulomb plus short-range (nuclear) potentials
also form a complete set. It also allows one to extend the Berggren's approach
of modification of the complete set of the eigenfunctions by including the
resonances for charged particles. We also demonstrate that the resonant Gamow
functions with the Coulomb tail can be regularized using Zel'dovich's
regularization method.Comment: 12 pages and 1 figur
Eigenvalues of Laplacian with constant magnetic field on non-compact hyperbolic surfaces with finite area
We consider a magnetic Laplacian on a
noncompact hyperbolic surface \mM with finite area. is a real one-form
and the magnetic field is constant in each cusp. When the harmonic
component of satifies some quantified condition, the spectrum of
is discrete. In this case we prove that the counting function of
the eigenvalues of satisfies the classical Weyl formula, even
when $dA=0.
On some problems involving Hardy's function
Some problems involving the classical Hardy function are discussed. In particular we discuss the odd moments of
, the distribution of its positive and negative values and the primitive
of . Some analogous problems for the mean square of are
also discussed.Comment: 15 page
Properties of the series solution for Painlevé I
We present some observations on the asymptotic behaviour of the coefficients in the Laurent series expansion of solutions of the first Painlevé equation. For the general solution, explicit recursive formulae for the Taylor expansion of the tau-function around a zero are given, which are natural extensions of analogous formulae for the elliptic sigma function, as given by Weierstrass. Numerical and exact results on the symmetric solution which is singular at the origin are also presented
Arithmetical properties of Multiple Ramanujan sums
In the present paper, we introduce a multiple Ramanujan sum for arithmetic
functions, which gives a multivariable extension of the generalized Ramanujan
sum studied by D. R. Anderson and T. M. Apostol. We then find fundamental
arithmetic properties of the multiple Ramanujan sum and study several types of
Dirichlet series involving the multiple Ramanujan sum. As an application, we
evaluate higher-dimensional determinants of higher-dimensional matrices, the
entries of which are given by values of the multiple Ramanujan sum.Comment: 19 page
A functional model, eigenvalues, and finite singular critical points for indefinite Sturm-Liouville operators
Eigenvalues in the essential spectrum of a weighted Sturm-Liouville operator
are studied under the assumption that the weight function has one turning
point. An abstract approach to the problem is given via a functional model for
indefinite Sturm-Liouville operators. Algebraic multiplicities of eigenvalues
are obtained. Also, operators with finite singular critical points are
considered.Comment: 38 pages, Proposition 2.2 and its proof corrected, Remarks 2.5, 3.4,
and 3.12 extended, details added in subsections 2.3 and 4.2, section 6
rearranged, typos corrected, references adde
Analyticity Properties and Unitarity Constraints of Heavy Meson Form Factors
We derive new bounds on the b-number form factor of the B meson.
(Revised version of hep-ph/9306214).Comment: 22 page
- …