8 research outputs found

    Furaquinocins K and L : Novel Naphthoquinone-Based Meroterpenoids from Streptomyces sp. Je 1-369

    Get PDF
    Actinomycetes are the most prominent group of microorganisms that produce biologically active compounds. Among them, special attention is focused on bacteria in the genus Streptomyces. Streptomycetes are an important source of biologically active natural compounds that could be considered therapeutic agents. In this study, we described the identification, purification, and structure elucidation of two new naphthoquinone-based meroterpenoids, furaquinocins K and L, from Streptomyces sp. Je 1-369 strain, which was isolated from the rhizosphere soil of Juniperus excelsa (Bieb.). The main difference between furaquinocins K and L and the described furaquinocins was a modification in the polyketide naphthoquinone skeleton. In addition, the structure of furaquinocin L contained an acetylhydrazone fragment, which is quite rare for natural compounds. We also identified a furaquinocin biosynthetic gene cluster in the Je 1-369 strain, which showed similarity (60%) with the furaquinocin B biosynthetic gene cluster from Streptomyces sp. KO-3988. Furaquinocin L showed activity against Gram-positive bacteria without cytotoxic effects

    Flavacol and Its Novel Derivative 3-Ξ²-Hydroxy Flavacol from Streptomyces sp. Pv 4-95 after the Expression of Heterologous AdpA

    Get PDF
    Actinomycetes are one of the main producers of biologically active compounds. However, their capabilities have not been fully evaluated due to the presence of many unexpressed silent clusters; moreover, actinomycetes can probably produce new or previously discovered natural products under certain conditions. Overexpressing the adpA gene into streptomycetes strains can unlock silent biosynthetic gene clusters. Herein, we showed that by applying this approach to Streptomyces sp. Pv 4-95 isolated from Phyllostachys viridiglaucescens rhizosphere soil, two new mass peaks were identified. NMR structure analysis identified these compounds as flavacol and a new 3-Ξ²-hydroxy flavacol derivative. We suggest that the presence of heterologous AdpA has no direct effect on the synthesis of flavacol and its derivatives in the Pv 4-95 strain. However, AdpA affects the synthesis of precursors by increasing their quantity, which then condenses into the resulting compounds

    БіосинтСтичний ΠΏΠΎΡ‚Π΅Ρ†Ρ–Π°Π» Π°ΠΊΡ‚ΠΈΠ½ΠΎΠΌΡ–Ρ†Π΅Ρ‚Ρ–Π² ризосфСри Helianthemum stevenii Rupr. Ex Juz. & Pozd.

    No full text
    Background. Today the actual problems of humanity are the high frequency of the emergence of new multi-resistant pathogenic microorganisms, lack of food and pollution, especially agro-ecosystems. Screening of new natural products and introducing them in medicine, veterinary medicine, agriculture, etc. is one of the approaches to solving these problems. Objects of particular interest are actinomycetes – record holders in the production of biologically active compounds.Objective. The purpose of the paper is evaluation of the biosynthetic properties of actinomycetes from the rhizosphere of the endemic Helianthemum stevenii Rupr. Ex Juz & Pozd. from Crimean peninsula.Methods. Samples of the H. stevenii Rupr. Ex Juz & Pozd. rhizosphere were taken on the southern slopes of the Nikita Range (Crimean Peninsula). Actinomycetes were isolated by direct sowing of the washed rhizosphere, aqua solution of phenol treatment of the roots, or by heating them at 100 Β°C within 60 minutes and sowing on the nutrient medium. Antibacterial and anti-candidiasis activities were studied by culturing the actinomycetes strains by a prick on the oat medium and pouring the 0.7% agar with a certain test culture. Antifungal properties were studied by putting the agar block with a 5-day fungal culture on cups with 3-day cultures of actinomycetes and subsequent incubation for 4 days. An activity index (AI) was determined by the ratio of the diameter zone of the inhibit growth test-cultures to the diameter of the actinomycetes colonies. Phytostimulants and enzymatic properties were studied by commonly accepted methods.Results. 107 actinomycetes strains from H. stevenii Rupr. Ex Juz. & Pozd. rhizosphere were isolated. 23.2% of isolates inhibited growth of one or more typical microbial test cultures which are capable of causing a disease in humans. 8.4% of the actinomycetes strains were antagonists of S. Π°ureus, the less actinomycetes strains inhibited gram-negative test cultures. AI of these strains was no more than 3. 80.1% of isolates were antagonists of at least one strain of the phytopathogenic bacteria. AI of these strains was from 1.2 to 13. Antifungal activity was in the 15.9% of isolates and their AI was no more than 3. 17.8 of actinomycetes strains were capable of producing indole-3-acetic acid, 10.3% – siderophores and 14.2% – phosphate solubilizers. A significant proportion of actinomycetes strains was capable of producing hydrolytic enzymes: amylases, lipases, pectinases and proteases. 29.9% of isolates can discolour Azure B and 8.4% are potentially laccase producers.Conclusions. The ability of actinomycetes strains from H. stevenii Rupr. Ex Juz. & Pozd. rhizosphere to produce antimicrobial compounds, enzymes and plants growth promoting (PGP) compounds was evaluated. Actinomycetes strains with wide range and specific inhibit certain pathogenic strain were selected as well as strains that specifically inhibit the growth of a particular strain of pathogenic Β microorganisms. A number of phytopathogenic bacteria antagonists tend to phytostimulation. The producers of hydrolases and oxidoreductase were isolated.ΠŸΡ€ΠΎΠ±Π»Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ°. ΠΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½Ρ‹ΠΌΠΈ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ°ΠΌΠΈ чСловСчаства сСгодня ΡΠ²Π»ΡΡŽΡ‚ΡΡ высокая частота возникновСния Π½ΠΎΠ²Ρ‹Ρ… ΠΌΡƒΠ»ΡŒΡ‚ΠΈΡ€Π΅Π·ΠΈΡΡ‚Π΅Π½Ρ‚Π½Ρ‹Ρ… Ρ„ΠΎΡ€ΠΌ ΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½Π½Ρ‹Ρ… ΠΌΠΈΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠ², Π½Π΅Ρ…Π²Π°Ρ‚ΠΊΠ° ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΎΠ² питания, Π° Ρ‚Π°ΠΊΠΆΠ΅ загрязнСниС ΠΎΠΊΡ€ΡƒΠΆΠ°ΡŽΡ‰Π΅ΠΉ срСды, особСнно агроэкоситСм. CΠΊΡ€ΠΈΠ½ΠΈΠ½Π³ Π½ΠΎΠ²Ρ‹Ρ… ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½Ρ‹Ρ… соСдинСний ΠΈ Π²Π½Π΅Π΄Ρ€Π΅Π½ΠΈΠ΅ ΠΈΡ… Π² ΠΌΠ΅Π΄ΠΈΡ†ΠΈΠ½Π΅, Π²Π΅Ρ‚Π΅Ρ€ΠΈΠ½Π°Ρ€ΠΈΠΈ, сСльском хозяйствС ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΡ… отраслях являСтся ΠΎΠ΄Π½ΠΈΠΌ ΠΈΠ· ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΎΠ² ΠΊ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡŽ этих ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ. ΠžΡΠΎΠ±Π΅Π½Π½Ρ‹ΠΉ интСрСс Π²Ρ‹Π·Ρ‹Π²Π°ΡŽΡ‚ Π°ΠΊΡ‚ΠΈΠ½ΠΎΠΌΠΈΡ†Π΅Ρ‚Ρ‹ – рСкордсмСны ΠΏΠΎ количСству синтСзируСмых биологичСски Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… соСдинСний.ЦСль. ЦСль Ρ€Π°Π±ΠΎΡ‚Ρ‹ состоит Π² ΠΎΡ†Π΅Π½ΠΊΠ΅ биосинтСтичСских свойств Π°ΠΊΡ‚ΠΈΠ½ΠΎΠΌΠΈΡ†Π΅Ρ‚ΠΎΠ² ризосфСры эндСмика ΠšΡ€Ρ‹ΠΌΡΠΊΠΎΠ³ΠΎ полуострова солнцСцвСта Π‘Ρ‚Π΅Π²Π΅Π½Π° Helianthemum stevenii Rupr. Ex Juz. & Pozd.ΠœΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ. ΠžΠ±Ρ€Π°Π·Ρ†Ρ‹ ризосфСры H. stevenii Rupr. Ex Juz. & Pozd. ΠΎΡ‚Π±ΠΈΡ€Π°Π»ΠΈ Π½Π° ΡŽΠΆΠ½Ρ‹Ρ… склонах Никитского Ρ…Ρ€Π΅Π±Ρ‚Π° (ΠšΡ€Ρ‹ΠΌΡΠΊΠΈΠΉ полуостров). Π˜Π·ΠΎΠ»ΠΈΡ€ΠΎΠ²Π°Π»ΠΈ Π°ΠΊΡ‚ΠΈΠ½ΠΎΠΌΠΈΡ†Π΅Ρ‚Ρ‹ ΠΏΡƒΡ‚Π΅ΠΌ прямого посСва смывов ризосфСры, ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΊΠΎΡ€Π½Π΅ΠΉ Π²ΠΎΠ΄Π½Ρ‹ΠΌ раствором Ρ„Π΅Π½ΠΎΠ»Π° ΠΈΠ»ΠΈ прогрСвания ΠΈΡ… ΠΏΡ€ΠΈ 100 Β°Π‘ Π½Π° протяТСнии 60 ΠΌΠΈΠ½ с ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ посСвом ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… суспСнзий Π½Π° ΠΏΠΈΡ‚Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ срСды. ΠΠ½Ρ‚ΠΈΠ±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ ΠΈ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΊΠ°Π½Π΄ΠΈΠ΄ΠΎΠ·Π½ΡƒΡŽ активности ΠΈΠ·ΡƒΡ‡Π°Π»ΠΈ ΠΏΡƒΡ‚Π΅ΠΌ посСва ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€ Π°ΠΊΡ‚ΠΈΠ½ΠΎΠΌΠΈΡ†Π΅Ρ‚ΠΎΠ² ΡƒΠΊΠΎΠ»ΠΎΠΌ Π½Π° овсяный Π°Π³Π°Ρ€ ΠΈ Π·Π°Π»ΠΈΠ²ΠΊΠΈ 0,7 %-Π½Ρ‹ΠΌ Π°Π³Π°Ρ€ΠΎΠΌ с ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠΉ тСст-ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€ΠΎΠΉ. ΠΠ½Ρ‚ΠΈΡ„ΡƒΠ½Π³Π°Π»ΡŒΠ½Ρ‹Π΅ свойства ΠΈΠ·ΡƒΡ‡Π°Π»ΠΈ ΠΏΡƒΡ‚Π΅ΠΌ выкладывания Π°Π³Π°Ρ€ΠΎΠ²ΠΎΠ³ΠΎ Π±Π»ΠΎΠΊΠ° с 5-Π΄Π½Π΅Π²Π½ΠΎΠΉ ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€ΠΎΠΉ Π³Ρ€ΠΈΠ±Π° Π½Π° Ρ‡Π°ΡˆΠΊΠΈ с 3-Π΄Π½Π΅Π²Π½Ρ‹ΠΌΠΈ ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Π°ΠΌΠΈ Π°ΠΊΡ‚ΠΈΠ½ΠΎΠΌΠΈΡ†Π΅Ρ‚ΠΎΠ² ΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΈΠ½ΠΊΡƒΠ±ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π½Π° протяТСнии 4 суток. По ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€Π° Π·ΠΎΠ½ угнСтСния роста тСст-ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€ ΠΊ Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€Ρƒ ΠΊΠΎΠ»ΠΎΠ½ΠΈΠΉ Π°ΠΊΡ‚ΠΈΠ½ΠΎΠΌΠΈΡ†Π΅Ρ‚ΠΎΠ² опрСдСляли индСкс активности (ИА). Π€ΠΈΡ‚ΠΎΡΡ‚ΠΈΠΌΡƒΠ»ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ ΠΈ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°Ρ‚ΠΈΠ²Π½Ρ‹Π΅ свойства опрСдСляли общСпринятыми ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Из ризосфСры H. stevenii Rupr. Ex Juz. & Pozd. ΠΈΠ·ΠΎΠ»ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ 107 ΡˆΡ‚Π°ΠΌΠΌΠΎΠ² Π°ΠΊΡ‚ΠΈΠ½ΠΎΠΌΠΈΡ†Π΅Ρ‚ΠΎΠ². 23,2Β % изолятов ΡƒΠ³Π½Π΅Ρ‚Π°Π»ΠΈ рост ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΈ Π±ΠΎΠ»Π΅Π΅ Ρ‚ΠΈΠΏΠΈΡ‡Π½Ρ‹Ρ… ΡˆΡ‚Π°ΠΌΠΌΠΎΠ² ΠΌΠΈΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠ², способных Π²Ρ‹Π·Ρ‹Π²Π°Ρ‚ΡŒ ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΈ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°. 8,4Β % изо­лятов Π±Ρ‹Π»ΠΈ антагонистами S.Β Π°ureus, рост Π³Ρ€Π°ΠΌΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ Π·Π°Π΄Π΅Ρ€ΠΆΠΈΠ²Π°Π»ΠΎ сущСствСнно мСньшС ΡˆΡ‚Π°ΠΌΠΌΠΎΠ² Π°ΠΊΡ‚ΠΈΠ½ΠΎΠΌΠΈΡ†Π΅Ρ‚ΠΎΠ². ИА этих изолятов Π½Π΅ ΠΏΡ€ΠΈΠ²Ρ‹ΡˆΠ°Π» 3. 80,1 % изолятов Π±Ρ‹Π»ΠΈ антагонистами хотя Π±Ρ‹ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΡˆΡ‚Π°ΠΌΠΌΠ° Ρ„ΠΈΡ‚ΠΎΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½Π½Ρ‹Ρ… Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ. ИА этих ΡˆΡ‚Π°ΠΌΠΌΠΎΠ² составлял 1,2–13,0. ΠΠ½Ρ‚ΠΈΡ„ΡƒΠ½Π³Π°Π»ΡŒΠ½ΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ проявляли 15,9 % ΡˆΡ‚Π°ΠΌΠΌΠΎΠ² Π°ΠΊΡ‚ΠΈΠ½ΠΎΠΌΠΈΡ†Π΅Ρ‚ΠΎΠ², Π° ΠΈΡ… ИА Π½Π΅ ΠΏΡ€Π΅Π²Ρ‹ΡˆΠ°Π» 3. 17,8 % изолятов ΠΏΡ€ΠΎΠ΄ΡƒΡ†ΠΈΡ€ΠΎΠ²Π°Π»ΠΈ ΠΈΠ½Π΄ΠΎΠ»ΠΈΠ»-3-ΡƒΠΊΡΡƒΡΠ½ΡƒΡŽ кислоту, 10,3 % – сидСрофоры, Π° 14,2Β % – ΡΠΎΠ»ΡŽΠ±ΠΈΠ»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π»ΠΈ соСдинСния фосфора. Π—Ρ‡Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ Ρ‡Π°ΡΡ‚ΡŒ ΡˆΡ‚Π°ΠΌΠΌΠΎΠ² Π°ΠΊΡ‚ΠΈΠ½ΠΎΠΌΠΈΡ†Π΅Ρ‚ΠΎΠ² ΠΏΡ€ΠΎΠ΄ΡƒΡ†ΠΈΡ€ΠΎΠ²Π°Π»Π° гидролитичСскиС Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Ρ‹: Π°ΠΌΠΈΠ»Π°Π·Ρ‹, Π»ΠΈΠΏΠ°Π·Ρ‹, Ρ†Π΅Π»Π»ΡŽΠ»Π°Π·Ρ‹, ΠΏΡ€ΠΎΡ‚Π΅Π°Π·Ρ‹. 29,9 % изолятов Π΄Π΅ΠΊΠΎΠ»ΠΎΡ€ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π»ΠΈ Azure B, Π° Ρ‚Π°ΠΊΠΆΠ΅ 8,4Β % ΡˆΡ‚Π°ΠΌΠΌΠΎΠ² Π°ΠΊΡ‚ΠΈΠ½ΠΎΠΌΠΈΡ†Π΅Ρ‚ΠΎΠ² синтСзировали Π»Π°ΠΊΠΊΠ°Π·Ρ‹.Π’Ρ‹Π²ΠΎΠ΄Ρ‹. ΠžΡ†Π΅Π½Π΅Π½Π° ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ Π°ΠΊΡ‚ΠΈΠ½ΠΎΠΌΠΈΡ†Π΅Ρ‚ΠΎΠ² ризосфСры H. stevenii Rupr. Ex Juz. & Pozd ΡΠΈΠ½Ρ‚Π΅Π·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΌΠΈΠΊΡ€ΠΎΠ±Π½Ρ‹Π΅ соСдинСния, Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Ρ‹, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»Ρ‹, способныС ΡΡ‚ΠΈΠΌΡƒΠ»ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ рост ΠΈ Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ растСний. Π˜Π·ΠΎΠ»ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ ΡˆΡ‚Π°ΠΌΠΌΡ‹ Π°ΠΊΡ‚ΠΈΠ½ΠΎΠΌΠΈΡ†Π΅Ρ‚ΠΎΠ² с ΡˆΠΈΡ€ΠΎΠΊΠΈΠΌ спСктром Π°Π½Ρ‚ΠΈΠΌΠΈΠΊΡ€ΠΎΠ±Π½ΠΎΠ³ΠΎ дСйствия, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΡˆΡ‚Π°ΠΌΠΌΡ‹, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ спСцифичСски ΡƒΠ³Π½Π΅Ρ‚Π°ΡŽΡ‚ рост ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠ³ΠΎ ΡˆΡ‚Π°ΠΌΠΌΠ° ΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½Π½Ρ‹Ρ… ΠΌΠΈΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠ². Для ряда антагонистов Ρ„ΠΈΡ‚ΠΎΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½Π½ΠΎΠΉ ΠΌΠΈΠΊΡ€ΠΎΡ„Π»ΠΎΡ€Ρ‹ свойствСнно Ρ„ΠΈΡ‚ΠΎΡΡ‚ΠΈΠΌΡƒΠ»ΠΈΡ€ΡƒΡŽΡ‰Π΅Π΅ дСйствиС. Π˜Π·ΠΎΠ»ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ ΠΏΡ€ΠΎΠ΄ΡƒΡ†Π΅Π½Ρ‚Ρ‹ Π³ΠΈΠ΄Ρ€ΠΎΠ»Π°Π· ΠΈ оксидорСдуктаз.ΠŸΡ€ΠΎΠ±Π»Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ°. ΠΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΈΠΌΠΈ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ°ΠΌΠΈ Π»ΡŽΠ΄ΡΡ‚Π²Π° ΡΡŒΠΎΠ³ΠΎΠ΄Π½Ρ– Ρ” висока частота виникнСння Π½ΠΎΠ²ΠΈΡ… ΠΌΡƒΠ»ΡŒΡ‚ΠΈΒ­Ρ€Π΅Π·ΠΈΡΡ‚Π΅Π½Ρ‚Π½ΠΈΡ… Ρ„ΠΎΡ€ΠΌ ΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½Π½ΠΈΡ… ΠΌΡ–ΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½Ρ–Π·ΠΌΡ–Π², нСстача ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Ρ–Π² харчування, Π° Ρ‚Π°ΠΊΠΎΠΆ забруднСння навколишнього сСрСдовища, особливо агроСкоситСм. Π‘ΠΊΡ€ΠΈΠ½Ρ–Π½Π³ Π½ΠΎΠ²ΠΈΡ… ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½ΠΈΡ… ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Ρ–Π² Ρ‚Π° впровадТСння Ρ—Ρ… Ρƒ ΠΌΠ΅Π΄ΠΈΡ†ΠΈΠ½Ρ–, Π²Π΅Ρ‚Π΅Ρ€ΠΈΠ½Π°Ρ€Ρ–Ρ—, ΡΡ–Π»ΡŒΡΡŒΠΊΠΎΠΌΡƒ господарстві Ρ‚ΠΎΡ‰ΠΎ Ρ” ΠΎΠ΄Π½ΠΈΠΌ Ρ–Π· ΠΏΡ–Π΄Ρ…ΠΎΠ΄Ρ–Π² Π΄ΠΎ Π²ΠΈΡ€Ρ–ΡˆΠ΅Π½Π½Ρ Ρ†ΠΈΡ… ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ. Особливий інтСрСс Π²ΠΈΠΊΠ»ΠΈΠΊΠ°ΡŽΡ‚ΡŒ Π°ΠΊΡ‚ΠΈΠ½ΠΎΠΌΡ–Ρ†Π΅Ρ‚ΠΈ – рСкордсмСни Π·Π° ΠΊΡ–Π»ΡŒΠΊΡ–ΡΡ‚ΡŽ синтСзованих Π±Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΈΡ… сполук.ΠœΠ΅Ρ‚Π°. ΠœΠ΅Ρ‚ΠΎΡŽ Ρ€ΠΎΠ±ΠΎΡ‚ΠΈ Ρ” ΠΎΡ†Ρ–Π½ΠΊΠ° біосинтСтичних властивостСй Π°ΠΊΡ‚ΠΈΠ½ΠΎΠΌΡ–Ρ†Π΅Ρ‚Ρ–Π² ризосфСри Π΅Π½Π΄Π΅ΠΌΡ–ΠΊΠ° ΠšΡ€ΠΈΠΌΡΡŒΠΊΠΎΠ³ΠΎ півострова сонянки CΡ‚Π΅Π²Π΅Π½Π° Helianthemum stevenii Rupr. Ex Juz. & Pozd.ΠœΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° Ρ€Π΅Π°Π»Ρ–Π·Π°Ρ†Ρ–Ρ—. Π—Ρ€Π°Π·ΠΊΠΈ ризосфСри H. stevenii Rupr. Ex Juz. & Pozd. Π²Ρ–Π΄Π±ΠΈΡ€Π°Π»ΠΈ Π½Π° ΠΏΡ–Π²Π΄Π΅Π½Π½ΠΈΡ… схилах ΠΡ–ΠΊΡ–Ρ‚ΡΡŒΠΊΠΎΠ³ΠΎ Ρ…Ρ€Π΅Π±Ρ‚Π° (ΠšΡ€ΠΈΠΌΡΡŒΠΊΠΈΠΉ півострів). Виділяли Π°ΠΊΡ‚ΠΈΠ½ΠΎΠΌΡ–Ρ†Π΅Ρ‚ΠΈ прямим посівом Π·ΠΌΠΈΠ²Ρ–Π² ризосфСри, ΠΎΠ±Ρ€ΠΎΠ±ΠΊΠΎΡŽ ΠΊΠΎΡ€Π΅Π½Ρ–Π² Π²ΠΎΠ΄Π½ΠΈΠΌ Ρ€ΠΎΠ·Ρ‡ΠΈΠ½ΠΎΠΌ Ρ„Π΅Π½ΠΎΠ»Ρƒ Π°Π±ΠΎ ΠΏΡ€ΠΎΠΆΠ°Ρ€ΡŽΠ²Π°Π½Π½ΡΠΌ Ρ—Ρ… Π·Π° 100 Β°Π‘ протягом 60 Ρ…Π² Π· подальшим висіванням Π½Π° ΠΆΠΈΠ²ΠΈΠ»ΡŒΠ½Ρ– сСрСдовища. АнтибактСрійні Ρ‚Π° ΠΏΡ€ΠΎΡ‚ΠΈΠΊΠ°Π½Π΄ΠΈΠ΄ΠΎΠ·Π½Ρƒ активності Π²ΠΈΠ²Ρ‡Π°Π»ΠΈ Ρ‡Π΅Ρ€Π΅Π· висівання ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€ Π°ΠΊΡ‚ΠΈΠ½ΠΎΠΌΡ–Ρ†Π΅Ρ‚Ρ–Π² ΡƒΠΊΠΎΠ»ΠΎΠΌ Π½Π° вівсянС сСрСдовищС Ρ– заливання 0,7Β %-Π½ΠΈΠΌ Π°Π³Π°Ρ€ΠΎΠΌ Π· пСвною тСст-ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€ΠΎΡŽ. ΠΠ½Ρ‚ΠΈΡ„ΡƒΠ½Π³Π°Π»ΡŒΠ½Ρ– властивості Π²ΠΈΠ²Ρ‡Π°Π»ΠΈ Ρ‡Π΅Ρ€Π΅Π· викладання Π°Π³Π°Ρ€ΠΎΠ²ΠΎΠ³ΠΎ Π±Π»ΠΎΠΊΡƒ Π· 5-дСнною ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€ΠΎΡŽ Π³Ρ€ΠΈΠ±Π° Π½Π° Ρ‡Π°ΡˆΠΊΠΈ Π· 3-Π΄Π΅Π½Π½ΠΈΠΌΠΈ ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Π°ΠΌΠΈ Π°ΠΊΡ‚ΠΈΠ½ΠΎΠΌΡ–Ρ†Π΅Ρ‚Ρ–Π² Ρ‚Π° подальшим інкубуванням протягом 4-Ρ… Π΄Ρ–Π±. Π—Π° Π²Ρ–Π΄Π½ΠΎΡˆΠ΅Π½Π½ΡΠΌ Π΄Ρ–Π°ΠΌΠ΅Ρ‚Ρ€Π° Π·ΠΎΠ½ пригнічСння росту тСст-ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€ Π΄ΠΎ Π΄Ρ–Π°ΠΌΠ΅Ρ‚Ρ€Π° ΠΊΠΎΠ»ΠΎΠ½Ρ–ΠΉ Π°ΠΊΡ‚ΠΈΠ½ΠΎΠΌΡ–Ρ†Π΅Ρ‚Ρ–Π² Π²ΠΈΠ·Π½Π°Ρ‡Π°Π»ΠΈ індСкс активності (ІА). Π€Ρ–Ρ‚ΠΎΡΡ‚ΠΈΠΌΡƒΠ»ΡŽΠ²Π°Π»ΡŒΠ½Ρ– Ρ‚Π° Ρ„Π΅Ρ€Β­ΠΌΠ΅Π½Ρ‚Π°Ρ‚ΠΈΠ²Π½Ρ– властивості Π²ΠΈΠ²Ρ‡Π°Π»ΠΈ Π·Π°Π³Π°Π»ΡŒΠ½ΠΎΠΏΡ€ΠΈΠΉΠ½ΡΡ‚ΠΈΠΌΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ. Π— ризосфСри H. stevenii Rupr. Ex Juz. & Pozd. Π²ΠΈΠ΄Ρ–Π»Π΅Π½ΠΎ 107 ΡˆΡ‚Π°ΠΌΡ–Π² Π°ΠΊΡ‚ΠΈΠ½ΠΎΠΌΡ–Ρ†Π΅Ρ‚Ρ–Π². 23,2Β % ізолятів ΠΏΡ€ΠΈΠ³Π½Ρ–Ρ‡ΡƒΠ²Π°Π»ΠΈ ріст ΠΎΠ΄Π½ΠΎΠ³ΠΎ Ρ– Π±Ρ–Π»ΡŒΡˆΠ΅ Ρ‚ΠΈΠΏΠΎΠ²ΠΈΡ… ΡˆΡ‚Π°ΠΌΡ–Π² ΠΌΡ–ΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½Ρ–Π·ΠΌΡ–Π², Π·Π΄Π°Ρ‚Π½ΠΈΡ… ΡΠΏΡ€ΠΈΡ‡ΠΈΠ½ΡŽΠ²Π°Ρ‚ΠΈ Ρ–Π½Ρ„Π΅ΠΊΡ†Ρ–Ρ— людини. 8,4 % ΡˆΡ‚Π°ΠΌΡ–Π² Π°ΠΊΡ‚ΠΈΠ½ΠΎΠΌΡ–Ρ†Π΅Ρ‚Ρ–Π² Π±ΡƒΠ»ΠΈ антагоністами S. Π°ureus, ріст Π³Ρ€Π°ΠΌΠ½Π΅Π³Π°Ρ‚ΠΈΠ²Π½ΠΈΡ… Π±Π°ΠΊΡ‚Π΅Ρ€Ρ–ΠΉ Π·Π°Ρ‚Ρ€ΠΈΠΌΡƒΠ²Π°Π»ΠΎ Π·Π½Π°Ρ‡Π½ΠΎ мСншС дослідТуваних ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€. ІА Ρ†ΠΈΡ… ізолятів Π½Π΅ ΠΏΠ΅Ρ€Π΅Π²ΠΈΡ‰ΡƒΠ²Π°Π² 3. 80,1Β % ізолятів Π±ΡƒΠ»ΠΈ антагоністами Ρ…ΠΎΡ‡Π° Π± ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΡˆΡ‚Π°ΠΌΡƒ Ρ„Ρ–Ρ‚ΠΎΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½Π½ΠΈΡ… Π±Π°ΠΊΡ‚Π΅Ρ€Ρ–ΠΉ. ІА Ρ†ΠΈΡ… ΡˆΡ‚Π°ΠΌΡ–Π² становив 1,2–13,0. ΠΠ½Ρ‚ΠΈΡ„ΡƒΠ½Π³Π°Π»ΡŒΠ½Ρƒ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ виявляло 15,9Β % ізолятів, Π° Ρ—Ρ… ІА Π½Π΅ ΠΏΠ΅Ρ€Π΅Π²ΠΈΡ‰ΡƒΠ²Π°Π² 3. 17,8Β % ΡˆΡ‚Π°ΠΌΡ–Π² ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡƒΠ²Π°Π»ΠΈ Ρ–Π½Π΄ΠΎΠ»Ρ–Π»-3-ΠΎΡ†Ρ‚ΠΎΠ²Ρƒ кислоту, 10,3Β % – сидСрофори, Π° 14,2Β % ΡΠΎΠ»ΡŽΠ±Ρ–Π»Ρ–Π·ΡƒΠ²Π°Π»ΠΈ сполуки фосфору. Π—Π½Π°Ρ‡Π½Π° частка ΡˆΡ‚Π°ΠΌΡ–Π² Π°ΠΊΡ‚ΠΈΠ½ΠΎΠΌΡ–Ρ†Π΅Ρ‚Ρ–Π² ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡƒΠ²Π°Π»ΠΈ Π³Ρ–Π΄Ρ€ΠΎΠ»Ρ–Ρ‚ΠΈΡ‡Π½Ρ– Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΈ: Π°ΠΌΡ–Π»Π°Π·ΠΈ, Π»Ρ–ΠΏΠ°Π·ΠΈ, ΠΏΠ΅ΠΊΡ‚ΠΈΠ½Π°Π·ΠΈ, ΠΏΡ€ΠΎΡ‚Π΅Π°Π·ΠΈ. 29,9Β % ізолятів Π·Π΄Π°Ρ‚Π½Ρ– Π΄Π΅ΠΊΠΎΠ»ΠΎΡ€ΠΈΠ·ΡƒΠ²Π°Ρ‚ΠΈ Azure B, Π° Ρ‚Π°ΠΊΠΎΠΆ 8,4Β % ΡˆΡ‚Π°ΠΌΡ–Π² Π°ΠΊΡ‚ΠΈΠ½ΠΎΠΌΡ–Ρ†Π΅Ρ‚Ρ–Π² синтСзували Π»Π°ΠΊΠ°Π·ΠΈ.Висновки. ΠžΡ†Ρ–Π½Π΅Π½ΠΎ Π·Π΄Π°Ρ‚Π½Ρ–ΡΡ‚ΡŒ Π°ΠΊΡ‚ΠΈΠ½ΠΎΠΌΡ–Ρ†Π΅Ρ‚Ρ–Π² ризосфСри Helianthemum stevenii Rupr. Ex Juz. & Pozd синтСзувати Π°Π½Ρ‚ΠΈΠΌΡ–ΠΊΡ€ΠΎΠ±Π½Ρ– Ρ€Π΅Ρ‡ΠΎΠ²ΠΈΠ½ΠΈ, Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΈ, Π° Ρ‚Π°ΠΊΠΎΠΆ сполуки, Π·Π΄Π°Ρ‚Π½Ρ– сприяти росту Ρ– Ρ€ΠΎΠ·Π²ΠΈΡ‚ΠΊΡƒ рослин. Π’ΠΈΠ΄Ρ–Π»Π΅Π½ΠΎ ΡˆΡ‚Π°ΠΌΠΈ Π· ΡˆΠΈΡ€ΠΎΠΊΠΈΠΌ спСктром Π°Π½Ρ‚ΠΈΠΌΡ–ΠΊΡ€ΠΎΠ±Π½ΠΎΡ— Π΄Ρ–Ρ—, Π° Ρ‚Π°ΠΊΠΎΠΆ ΡˆΡ‚Π°ΠΌΠΈ, які спСцифічно ΠΏΡ€ΠΈΠ³Π½Ρ–Ρ‡ΡƒΠ²Π°Π»ΠΈ ріст ΠΏΠ΅Π²Π½ΠΎΠ³ΠΎ ΡˆΡ‚Π°ΠΌΡƒ ΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½Π½ΠΈΡ… ΠΌΡ–ΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½Ρ–Π·ΠΌΡ–Π². Для Π½ΠΈΠ·ΠΊΠΈ антагоністів Ρ„Ρ–Ρ‚ΠΎΒ­ΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½Β­Π½ΠΎΡ— ΠΌΡ–ΠΊΡ€ΠΎΡ„Π»ΠΎΡ€ΠΈ Π±ΡƒΠ»Π° ΠΏΡ€ΠΈΡ‚Π°ΠΌΠ°Π½Π½Π° Ρ„Ρ–Ρ‚ΠΎΡΡ‚ΠΈΠΌΡƒΠ»ΡŽΠ²Π°Π»ΡŒΠ½Π° дія. Π’ΠΈΠ΄Ρ–Π»Π΅Π½ΠΎ ΠΏΡ€ΠΎΠ΄ΡƒΡ†Π΅Π½Ρ‚Ρ–Π² Π³Ρ–Π΄Ρ€ΠΎΠ»Π°Π· Ρ‚Π° оксидорСдуктаз

    Furaquinocins K and L: Novel Naphthoquinone-Based Meroterpenoids from Streptomyces sp. Je 1-369

    No full text
    Actinomycetes are the most prominent group of microorganisms that produce biologically active compounds. Among them, special attention is focused on bacteria in the genus Streptomyces. Streptomycetes are an important source of biologically active natural compounds that could be considered therapeutic agents. In this study, we described the identification, purification, and structure elucidation of two new naphthoquinone-based meroterpenoids, furaquinocins K and L, from Streptomyces sp. Je 1-369 strain, which was isolated from the rhizosphere soil of Juniperus excelsa (Bieb.). The main difference between furaquinocins K and L and the described furaquinocins was a modification in the polyketide naphthoquinone skeleton. In addition, the structure of furaquinocin L contained an acetylhydrazone fragment, which is quite rare for natural compounds. We also identified a furaquinocin biosynthetic gene cluster in the Je 1-369 strain, which showed similarity (60%) with the furaquinocin B biosynthetic gene cluster from Streptomyces sp. KO-3988. Furaquinocin L showed activity against Gram-positive bacteria without cytotoxic effects

    The diversity and antibacterial activity of culturable actinobacteria isolated from the rhizosphere soil of Deschampsia antarctica (Galindez Island, Maritime Antarctic)

    No full text
    Antarctic actinobacteria, which can be isolated from both soils and marine sediments, demonstrate a wide range of antimicrobial activities as well as significant biosynthetic potential as the producers of biologically active compounds. However, the actinobacterial diversity of the Antarctic region has not yet been sufficiently studied. The present study sought to examine the diversity and antibacterial activity of culturable actinobacteria isolated from the rhizosphere soil of Deschampsia antarctica (Γ‰. Desv.), which was collected from Galindez Island, Maritime Antarctic. Among the actinobacteria isolated using a 16S rRNA gene sequence-based phylogenetic analysis process, five genera, namely Streptomyces, Micromonospora, Umezawaea, Kribbella and Micrococcus, were identified. To the best of our knowledge, this is the first report to describe the isolation and initial characterisation of members of the genus Umezawaea from the Antarctic. The isolated actinobacteria were assayed to determine their activity against Gram-positive bacteria, Gram-negative bacteria and yeast. Among the isolated strains, only 30.2% were able to inhibit the growth of at least one of the tested pathogens. The polymerase chain reaction-based screening of the biosynthetic genes revealed the presence of type I polyketide synthases (65.1%), type II polyketide synthases (25.6%) and non-ribosomal peptide synthetases (9.3%) in the actinobacteria strains. The examination of the sensitivity/resistance to antibiotics profile of the actinobacteria strains revealed their high sensitivity in relation to the tested antibiotics. Taken together, the results showed that Antarctic actinobacteria demonstrate potential as the producers of natural bioactive compounds, which means that they represent a valuable prospect for further studies.Ministry of Education and Science of Ukrain

    The adpA-like regulatory gene from Actinoplanes teichomyceticus: in silico analysis and heterologous expression

    No full text
    Ostash B, Yushchuk O, Tistechok S, et al. The adpA-like regulatory gene from Actinoplanes teichomyceticus: in silico analysis and heterologous expression. World Journal of Microbiology and Biotechnology. 2015;31(8):1297-1301.Analysis of the draft sequence of the genome of teicoplanin producer Actinoplanes teichomyceticus (NRRL-B16726) led to identification of several genes encoding AraC-family regulators that resemble AdpA, master regulator of transcription in Streptomyces. We elucidated possible regulatory functions of one of the identified genes, adpA19 (at) , most similar to archetypal adpA from model Streptomyces species, in a series of expression experiments. Introduction of adpA19 (at) under control of its own promoter on moderate copy number vector pKC1139 into NRRL-B16726 had no influence on antibiotic production and sporulation. Introduction of adpA19 (at) into Streptomyces coelicolor M145 and several S. ghanaensis strains had major influence on antibiotic production by these bacteria. Finally, adpA19 (at) expression in a set of soil actinomycete isolates led to induction of synthesis of antibiotic compounds. Our data point to pleiotropic regulatory role of adpA19 (at) , warranting its use as a tool to manipulate secondary metabolome of actinomycetes
    corecore