474 research outputs found

    Rates of nocturnal transpiration in two evergreen temperate woodland species with differing water-use strategies

    Full text link
    Nocturnal fluxes may be a significant factor in the annual water budget of forested ecosystems. Here, we assessed sap flow in two co-occurring evergreen species (Eucalyptus parramattensis and Angophora bakeri) in a temperate woodland for 2 years in order to quantify the magnitude of seasonal nocturnal sap flow (En) under different environmental conditions. The two species showed different diurnal water relations, demonstrated by different diurnal curves of stomatal conductance, sap flow and leaf water potential. The relative influence of several microclimatic variables, including wind speed (U), vapour pressure deficit (D), the product of U and D (UD) and soil moisture content, were quantified. D exerted the strongest influence on En (r2 = 0.59-0.86), soil moisture content influenced En when D was constant, but U and UD did not generally influence En. In both species, cuticular conductance (Gc) was a small proportion of total leaf conductance (Gs) and was not a major pathway for En. We found that En was primarily a function of transpiration from the canopy rather than refilling of stem storage, with canopy transpiration accounting for 50-70% of nocturnal flows. Mean En was 6-8% of the 24-h flux across seasons (spring, summer and winter), but was up to 19% of the 24-h flux on some days in both species. Despite different daytime strategies in water use of the two species, both species demonstrated low night-time water loss, suggesting similar controls on water loss at night. In order to account for the impact of En on pre-dawn leaf water potential arising from the influence of disequilibria between root zone and leaf water potential, we also developed a simple model to more accurately predict soil water potential (ψs). © The Author 2010. Published by Oxford University Press. All rights reserved

    The peaked response of transpiration rate to vapour pressure deficit in field conditions can be explained by the temperature optimum of photosynthesis

    Full text link
    Leaf transpiration rate (E) frequently shows a peaked response to increasing vapour pressure deficit (D). The mechanisms for the decrease in E at high D, known as the 'apparent feed-forward response', are strongly debated but explanations to date have exclusively focused on hydraulic processes. However, stomata also respond to signals related to photosynthesis. We investigated whether the apparent feed-forward response of E to D in the field can be explained by the response of photosynthesis to temperature (T), which normally co-varies with D in field conditions. As photosynthesis decreases with increasing T past its optimum, it may drive a decrease in stomatal conductance (gs) that is additional to the response of gs to increasing D alone. If this additional decrease is sufficiently steep and coupling between A and gs occurs, it could cause an overall decrease in E with increasing D. We tested this mechanism using a gas exchange model applied to leaf-scale and whole-tree CO2 and H2O fluxes measured on Eucalyptus saligna growing in whole-tree chambers. A peaked response of E to D was observed at both leaf and whole-tree scales. We found that this peaked response was matched by a gas exchange model only when T effects on photosynthesis were incorporated. We conclude that field-based studies of the relationship between E and D need to consider signals related to changing photosynthetic rates in addition to purely hydraulic mechanisms. © 2014 Elsevier B.V

    Rooting depth explains [CO <inf>2</inf>]× drought interaction in Eucalyptus saligna

    Full text link
    Elevated atmospheric [CO 2] (eCa) often decreases stomatal conductance, which may delay the start of drought, as well as alleviate the effect of dry soil on plant water use and carbon uptake. We studied the interaction between drought and eCa in a whole-tree chamber experiment with Eucalyptus saligna. Trees were grown for 18 months in their Ca treatments before a 4-month dry-down. Trees grown in eCa were smaller than those grown in ambient Ca (aCa) due to an early growth setback that was maintained throughout the duration of the experiment. Pre-dawn leaf water potentials were not different between Ca treatments, but were lower in the drought treatment than the irrigated control. Counter to expectations, the drought treatment caused a larger reduction in canopy-average transpiration rates for trees in the eCa treatment compared with aCa. Total tree transpiration over the dry-down was positively correlated with the decrease in soil water storage, measured in the top 1.5 m, over the drying cycle; however, we could not close the water budget especially for the larger trees, suggesting soil water uptake below 1.5 m depth. Using neutron probe soil water measurements, we estimated fractional water uptake to a depth of 4.5 m and found that larger trees were able to extract more water from deep soil layers. These results highlight the interaction between rooting depth and response of tree water use to drought. The responses of tree water use to eCa involve interactions between tree size, root distribution and soil moisture availability that may override the expected direct effects of eCa. It is essential that these interactions be considered when interpreting experimental results. © 2011 The Author. Published by Oxford University Press. A ll rights reserved

    Embolism recovery strategies and nocturnal water loss across species influenced by biogeographic origin

    Full text link
    © 2019 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. Drought-induced tree mortality is expected to increase in future climates with the potential for significant consequences to global carbon, water, and energy cycles. Xylem embolism can accumulate to lethal levels during drought, but species that can refill embolized xylem and recover hydraulic function may be able to avoid mortality. Yet the potential controls of embolism recovery, including cross-biome patterns and plant traits such as nonstructural carbohydrates (NSCs), hydraulic traits, and nocturnal stomatal conductance, are unknown. We exposed eight plant species, originating from mesic (tropical and temperate) and semi-arid environments, to drought under ambient and elevated CO 2 levels, and assessed recovery from embolism following rewatering. We found a positive association between xylem recovery and NSCs, and, surprisingly, a positive relationship between xylem recovery and nocturnal stomatal conductance. Arid-zone species exhibited greater embolism recovery than mesic zone species. Our results indicate that nighttime stomatal conductance often assumed to be a wasteful use of water, may in fact be a key part of plant drought responses, and contribute to drought survival. Findings suggested distinct biome-specific responses that partially depended on species climate-of-origin precipitation or aridity index, which allowed some species to recover from xylem embolism. These findings provide improved understanding required to predict the response of diverse plant communities to drought. Our results provide a framework for predicting future vegetation shifts in response to climate change

    The roles of divergent and parallel molecular evolution contributing to thermal adaptive strategies in trees

    Get PDF
    Local adaptation is a driver of biological diversity, and species may develop analogous (parallel evolution) or alternative (divergent evolution) solutions to similar ecological challenges. We expect these adaptive solutions would culminate in both phenotypic and genotypic signals. Using two Eucalyptus species (Eucalyptus grandis and Eucalyptus tereticornis) with overlapping distributions grown under contrasting ‘local’ temperature conditions to investigate the independent contribution of adaptation and plasticity at molecular, physiological and morphological levels. The link between gene expression and traits markedly differed between species. Divergent evolution was the dominant pattern driving adaptation (91% of all significant genes); but overlapping gene (homologous) responses were dependent on the determining factor (plastic, adaptive or genotype by environment interaction). Ninety-eight percent of the plastic homologs were similarly regulated, while 50% of the adaptive homologs and 100% of the interaction homologs were antagonistical. Parallel evolution for the adaptive effect in homologous genes was greater than expected but not in favour of divergent evolution. Heat shock proteins for E. grandis were almost entirely driven by adaptation, and plasticity in E. tereticornis. These results suggest divergent molecular evolutionary solutions dominated the adaptive mechanisms among species, even in similar ecological circumstances. Suggesting that tree species with overlapping distributions are unlikely to equally persist in the future

    Interactive effects of elevated CO <inf>2</inf> and drought on nocturnal water fluxes in Eucalyptus saligna

    Full text link
    Nocturnal water flux has been observed in trees under a variety of environmental conditions and can be a significant contributor to diel canopy water flux. Elevated atmospheric CO 2 (elevated [CO 2]) can have an important effect on day-time plant water fluxes, but it is not known whether it also affects nocturnal water fluxes. We examined the effects of elevated [CO 2] on nocturnal water flux of field-grown Eucalyptus saligna trees using sap flux through the tree stem expressed on a sapwood area (J s) and leaf area (E t) basis. After 19 months growth under well-watered conditions, drought was imposed by withholding water for 5 months in the summer, ending with a rain event that restored soil moisture. Reductions in J s and E t were observed during the severe drought period in the dry treatment under elevated [CO 2], but not during moderate- and post-drought periods. Elevated [CO 2] affected night-time sap flux density which included the stem recharge period, called 'total night flux' (19:00 to 05:00, J s,r), but not during the post-recharge period, which primarily consisted of canopy transpiration (23:00 to 05:00, J s,c). Elevated [CO 2] wet (EW) trees exhibited higher J s,r than ambient [CO 2] wet trees (AW) indicating greater water flux in elevated [CO 2] under well-watered conditions. However, under drought conditions, elevated [CO 2] dry (ED) trees exhibited significantly lower J s,r than ambient [CO 2] dry trees (AD), indicating less water flux during stem recharge under elevated [CO 2]. J s,c did not differ between ambient and elevated [CO 2]. Vapour pressure deficit (D) was clearly the major influence on night-time sap flux. D was positively correlated with J s,r and had its greatest impact on J s,r at high D in ambient [CO 2]. Our results suggest that elevated [CO 2] may reduce night-time water flux in E. saligna when soil water content is low and D is high. While elevated [CO 2] affected J s,r, it did not affect day-time water flux in wet soil, suggesting that the responses of J s,r to environmental factors cannot be directly inferred from day-time patterns. Changes in J s,r are likely to influence pre-dawn leaf water potential, and plant responses to water stress. Nocturnal fluxes are clearly important for predicting effects of climate change on forest physiology and hydrology. © 2011 The Author. Published by Oxford University Press. A ll rights reserved

    Whole-tree chambers for elevated atmospheric CO<inf>2</inf> experimentation and tree scale flux measurements in south-eastern Australia: The Hawkesbury Forest Experiment

    Full text link
    Resolving ecophysiological processes in elevated atmospheric CO2 (Ca) at scales larger than single leaves poses significant challenges. Here, we describe a field-based experimental system designed to grow trees up to 9m tall in elevated Ca with the capacity to control air temperature and simultaneously measure whole-tree gas exchange. In western Sydney, Australia, we established the Hawkesbury Forest Experiment (HFE) where we built whole-tree chambers (WTC) to measure whole-tree CO2 and water fluxes of an evergreen broadleaf tree, Eucalyptus saligna. A single E. saligna tree was grown from seedling to small tree within each of 12 WTCs; six WTCs were maintained at ambient Ca and six WTCs were maintained at elevated Ca, targeted at ambient Ca +240μmolmol-1. All 12 WTCs were controlled to track ambient outside air temperature (Tair) and air water vapour deficit (Dair). During the experimental period, Tair, Dair and Ca in the WTCs were within 0.5°C, 0.3kPa, and 15μmolmol-1 of the set-points for 90% of the time, respectively. Diurnal responses of whole-tree CO2 and water vapour fluxes are analysed, demonstrating the ability of the tree chamber system to measure rapid environmental responses of these fluxes of entire trees. The light response of CO2 uptake for entire trees showed a clear diurnal hysteresis, attributed to stomatal closure at high Dair. Tree scale CO2 fluxes confirm the hypothesised deleterious effect of chilling night-time temperatures on whole-tree carbon gain in this subtropical Eucalyptus. The whole-tree chamber flux data add an invaluable scale to measurements in both ambient and elevated Ca and allow us to elucidate the mechanisms driving tree productivity responses to elevated Ca in interaction with water availability and temperature. © 2010 Elsevier B.V

    Plant functional traits differ in adaptability and are predicted to be differentially affected by climate change

    Get PDF
    1. Climate change is testing the resilience of forests worldwide pushing physiological tolerance to climatic extremes. Plant functional traits have been shown to be adapted to climate and have evolved patterns of trait correlations (similar patterns of distribution) and coordinations (mechanistic trade-off). We predicted that traits would differentiate between populations associated with climatic gradients, suggestive of adaptive variation, and correlated traits would adapt to future climate scenarios in similar ways. 2. We measured genetically determined trait variation and described patterns of correlation for seven traits: photochemical reflectance index (PRI), normalized difference vegetation index (NDVI), leaf size (LS), specific leaf area (SLA), δ13C (integrated water-use efficiency, WUE), nitrogen concentration (NCONC), and wood density (WD). All measures were conducted in an experimental plantation on 960 trees sourced from 12 populations of a key forest canopy species in southwestern Australia. 3. Significant differences were found between populations for all traits. Narrow sense heritability was significant for five traits (0.15–0.21), indicating that natural selection can drive differentiation; however, SLA (0.08) and PRI (0.11) were not significantly heritable. Generalized additive models predicted trait values across the landscape for current and future climatic conditions (>90% variance). The percent change differed markedly among traits between current and future predictions (differing as little as 1.5% (δ13C) or as much as 30% (PRI)). Some trait correlations were predicted to break down in the future (SLA:NCONC, δ13C:PRI, and NCONC:WD). 4. Synthesis: Our results suggest that traits have contrasting genotypic patterns and will be subjected to different climate selection pressures, which may lower the working optimum for functional traits. Further, traits are independently associated with different climate factors, indicating that some trait correlations may be disrupted in the future. Genetic constraints and trait correlations may limit the ability for functional traits to adapt to climate change

    Hydraulic and photosynthetic limitations prevail over root non-structural carbohydrate reserves as drivers of resprouting in two Mediterranean oaks

    Get PDF
    Resprouting is an ancestral trait in angiosperms that confers resilience after perturbations. As climate change increases stress, resprouting vigor is declining in many forest regions, but the underlying mechanism is poorly understood. Resprouting in woody plants is thought to be primarily limited by the availability of non-structural carbohydrate reserves (NSC), but hydraulic limitations could also be important. We conducted a multifactorial experiment with two levels of light (ambient, 2–3% of ambient) and three levels of water stress (0, 50 and 80 percent losses of hydraulic conductivity, PLC) on two Mediterranean oaks (Quercus ilex and Q. faginea) under a rain-out shelter (n = 360). The proportion of resprouting individuals after canopy clipping declined markedly as PLC increased for both species. NSC concentrations affected the response of Q. ilex, the species with higher leaf construction costs, and its effect depended on the PLC. The growth of resprouting individuals was largely dependent on photosynthetic rates for both species, while stored NSC availability and hydraulic limitations played minor and non-significant roles, respectively. Contrary to conventional wisdom, our results indicate that resprouting in oaks may be primarily driven by complex interactions between hydraulics and carbon sources, whereas stored NSC play a significant but secondary role

    Photosynthetic adaptation and acclimation to exploit seasonal periods of direct irradiance in three temperate, deciduous-forest herbs

    Full text link
    1.  We evaluated the potential for three species of deciduous-forest herbs to exploit seasonal periods of direct irradiance. In particular, we investigated the importance of photosynthetic acclimation as a mechanism for shade-tolerant herbs to utilize direct light reaching the forest floor before canopy expansion in the spring and after canopy leaf drop in the autumn. 2.  We measured the photosynthetic and growth characteristics of three co-occurring herbs of a northern hardwood forest: the spring ephemeral Allium tricoccum Ait., the summer-green Viola pubescens Ait., and the semi-evergreen Tiarella cordifolia L. 3.  Leaf CO 2 exchange, leaf mass per area, and leaf biochemistry differed among species and seasonally within species to match the changing light environment below the forest canopy. From spring to summer, as irradiance dropped with the expansion of the overstorey canopy, Viola leaves exhibited reduction of both photosynthetic capacity and light compensation point. Weaker acclimation of less magnitude occurred in Tiarella leaves over the spring–summer light transition; this was followed by further acclimation to the stronger autumn irradiance. 4.   Viola ’s greater range of photosynthetic acclimation was associated with shifts in allocation between Rubisco and chlorophyll, as well as changes in total leaf nitrogen (N) concentration and leaf mass per area (LMA). In contrast, Tiarella ’s narrow range of acclimation was associated solely with changes in allocation to Rubisco versus chlorophyll, with no changes in total leaf N or LMA. 5.  Seasonal changes in leaf chemistry and structure in Viola suggest a stepwise ontogeny whereby individual leaves are able to function as ‘sun leaves’ for 3–5 weeks in the spring, and then as ‘shade leaves’ for up to 3 months in the summer. 6.  Whole-plant biomass accumulation showed that all three species accumulated most of their annual biomass increment during periods of direct irradiance. These results demonstrate the importance of brief seasonal periods of strong irradiance to the growth of deciduous forest herbs, even shade-tolerant, summer and evergreen species.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75494/1/j.0269-8463.2001.00584.x.pd
    • …
    corecore