116 research outputs found
Two-Fluid RANS-RSTM-PDF Model for Turbulent Particulate Flows
A novel three-dimensional (3D) model based on Reynolds turbulence stress model (RSTM) closure of equations of carrier and particulate phases was elaborated for channel turbulent flows. The essence of the model is the direct calculation of normal and shear components of the Reynolds stresses for the particulate phase similar to the carrier fluid. The model is based on the Eulerian approach, which is applied for the 3D RANS modeling of the carrier flow and the particulate phase and the statistical probability dense function (PDF) approach focusing on the mathematical description of the second moments of the particulate phase
Ion-induced sulfuric acid-ammonia nucleation drives particle formation in coastal Antarctica
Formation of new aerosol particles from trace gases is a major source of cloud condensation nuclei (CCN) in the global atmosphere, with potentially large effects on cloud optical properties and Earth's radiative balance. Controlled laboratory experiments have resolved, in detail, the different nucleation pathways likely responsible for atmospheric new particle formation, yet very little is known from field studies about the molecular steps and compounds involved in different regions of the atmosphere. The scarcity of primary particle sources makes secondary aerosol formation particularly important in the Antarctic atmosphere. Here, we report on the observation of ion-induced nucleation of sulfuric acid and ammonia-a process experimentally investigated by the CERN CLOUD experiment-as a major source of secondary aerosol particles over coastal Antarctica. We further show that measured high sulfuric acid concentrations, exceeding 10(7) molecules cm(-3), are sufficient to explain the observed new particle growth rates. Our findings show that ion-induced nucleation is the dominant particle formation mechanism, implying that galactic cosmic radiation plays a key role in new particle formation in the pristine Antarctic atmosphere.Peer reviewe
Inhaled corticosteroid use is associated with increased circulating tregulatory cells in children with asthma
BACKGROUND: T regulatory (Treg) cells are important in balancing immune responses and dysregulation of Treg cells has been implicated in the pathogenesis of multiple disease states including asthma. In this study, our primary aim was to determine Treg cell frequency in the peripheral blood of children with and without asthma. The secondary aim was to explore the association between Treg cell frequency with allergen sensitization, disease severity and medication use. METHODS: Peripheral blood mononuclear cells from healthy control subjects (N = 93) and asthmatic children of varying disease severity (N = 66) were characterized by multi-parameter flow cytometry. RESULTS: Our findings demonstrate that children with asthma had a significantly increased frequency of Treg cells compared to children without asthma. Using a multivariate model, increased Treg cell frequency in children with asthma was most directly associated with inhaled corticosteroid use, and not asthma severity, allergic sensitization, or atopic status of the asthma. CONCLUSION: We conclude that low dose, local airway administration of corticosteroids is sufficient to impact the frequency of Treg cells in the peripheral blood. These data highlight the importance of considering medication exposure when studying Treg cells and suggest inhaled corticosteroid use in asthmatics may improve disease control through increased Treg cell frequency
Serum osteoprotegerin level, carotid-femoral pulse wave velocity and cardiovascular survival in haemodialysis patients
BACKGROUND: Osteoprotegerin (OPG) is a marker and regulator of
arterial calcification, and it is related to cardiovascular
survival in haemodialysis patients. The link between OPG and
aortic stiffening--a consequence of arterial calcification--has
not been previously evaluated in this population, and it is not
known whether OPG-related mortality risk is mediated by arterial
stiffening. METHODS: At baseline, OPG and aortic pulse wave
velocity (PWV) were measured in 98 chronic haemodialysis
patients who were followed for a median of 24 months. The
relationship between OPG and PWV was assessed by multivariate
linear regression. The role of PWV in mediating OPG related
cardiovascular mortality was evaluated by including both OPG and
PWV in the same survival model. RESULTS: At baseline mean
(standard deviation) PWV was 11.2 (3.3) m/s and median OPG
(interquartile range) was 11.1 (7.5-15.9) pmol/L. There was a
strong, positive, linear relationship between PWV and lnOPG (P =
0.009, model R(2) = 0.540) independent of covariates. During
follow-up 23 patients died of cardiovascular causes. In separate
univariate survival models both PWV and lnOPG were related to
cardiovascular mortality [hazard ratios 1.31 (1.14-1.50) and
8.96 (3.07-26.16), respectively]. When both PWV and lnOPG were
entered into the same model, only lnOPG remained significantly
associated with cardiovascular mortality [hazard ratio 1.11
(0.93-1.33) and 7.18 (1.89-27.25), respectively). CONCLUSION: In
haemodialysis patients OPG is strongly related to PWV and OPG
related cardiovascular mortality risk is, in part, mediated by
increased PWV
Prediction and measurement of the size-dependent stability of fluorescence in diamond over the entire nanoscale
Fluorescent defects in non-cytotoxic diamond nanoparticles are candidates for
qubits in quantum computing, optical labels in biomedical imaging and sensors
in magnetometry. For each application these defects need to be optically and
thermodynamically stable, and included in individual particles at suitable
concentrations (singly or in large numbers). In this letter, we combine
simulations, theory and experiment to provide the first comprehensive and
generic prediction of the size, temperature and nitrogen-concentration
dependent stability of optically active NV defects in nanodiamonds.Comment: Published in Nano Letters August 2009 24 pages, 6 figure
Exploring haemodynamics of haemodialysis using extrema points analysis model
Background: Haemodialysis is a form of renal replacement therapy used to treat
patients with end stage renal failure. It is becoming more appreciated that
haemodialysis patients exhibit higher rates of multiple end organ damage
compared to the general population. There is also a strong emerging evidence that
haemodialysis itself causes circulatory stress. We aimed at examining
haemodynamic patterns during haemodialysis using a new model and test that
model against a normal control.
Methods: We hypothesised that blood pressures generated by each heart beat
constantly vary between local peaks and troughs (local extrema), the frequency and
amplitude of which is regulated to maintain optimal organ perfusion. We also
hypothesised that such model could reveal multiple haemodynamic aberrations
during HD. Using a non-invasive cardiac output monitoring device (Finometer®) we
compared various haemodynamic parameters using the above model between a
haemodialysis patient during a dialysis session and an exercised normal control after
comparison at rest.
Results: Measurements yielded 29,751 data points for each haemodynamic
parameter. Extrema points frequency of mean arterial blood pressure was higher in
the HD subject compared to the normal control (0.761Hz IQR 0.5-0.818 vs 0.468Hz
IQR 0.223-0.872, P < 0.0001). Similarly, extrema points frequency of systolic blood
pressure was significantly higher in haemodialysis compared to normal. In contrary,
the frequency of extrema points for TPR was higher in the normal control compared
to HD (0.947 IQR 0.520-1.512 vs 0.845 IQR 0.730-1.569, P < 0.0001) with significantly
higher amplitudes.
Conclusion: Haemodialysis patients potentially exhibit an aberrant haemodynamic
behaviour characterised by higher extrema frequencies of mean arterial blood
pressure and lower extrema frequencies of total peripheral resistance. This, in
theory, could lead to higher variation in organ perfusion and may be detrimental to vulnerable vascular beds
Ultrafast electronic read-out of diamond NV centers coupled to graphene
Nonradiative transfer processes are often regarded as loss channels for an
optical emitter1, since they are inherently difficult to be experimentally
accessed. Recently, it has been shown that emitters, such as fluorophores and
nitrogen vacancy centers in diamond, can exhibit a strong nonradiative energy
transfer to graphene. So far, the energy of the transferred electronic
excitations has been considered to be lost within the electron bath of the
graphene. Here, we demonstrate that the trans-ferred excitations can be
read-out by detecting corresponding currents with picosecond time resolution.
We electrically detect the spin of nitrogen vacancy centers in diamond
electronically and con-trol the nonradiative transfer to graphene by electron
spin resonance. Our results open the avenue for incorporating nitrogen vacancy
centers as spin qubits into ultrafast electronic circuits and for harvesting
non-radiative transfer processes electronically
Fractional exhaled nitric oxide measurements are most closely associated with allergic sensitization in school-age children
Background: Factors affecting fractional exhaled nitric oxide (FeNO) in early childhood are incompletely understood. Objective: To examine the relationships between FeNO and allergic sensitization, total IgE, atopic dermatitis, rhinitis, asthma, and lung function (spirometry) in children. Methods: Children at high risk of asthma and other allergic diseases because of parental history were enrolled at birth and followed prospectively. FeNO was measured by an online technique at ages 6 and 8 years. Relationships among FeNO, various atopic characteristics, and asthma were evaluated. Results: Reproducible FeNO measurements were obtained in 64% (135/210) of 6-year-old and 93% (180/194) of 8-year-old children. There was seasonal variability in FeNO. Children with aeroallergen sensitization at ages 6 and 8 years had increased levels of FeNO compared with those not sensitized (geometric mean; 6 years, 10.9 vs 6.7 parts per billion [ppb], P < .0001; 8 years, 14.6 vs 7.1 ppb, P < .0001). FeNO was higher in children with asthma than in those without asthma at 8 years but not 6 years of age (6 years, 9.2 vs 8.3 ppb, P 5 .48; 8 years, 11.5 vs 9.2 ppb, P 5 .03). At 8 years of age, this difference was no longer significant in a multivariate model that included aeroallerge
Rhinovirus illnesses during infancy predict subsequent childhood wheezing
Background: The contribution of viral respiratory infections during infancy to the development of subsequent wheezing and/ or allergic diseases in early childhood is not established. Objective: To evaluate these relationships prospectively from birth to 3 years of age in 285 children genetically at high risk for developing allergic respiratory diseases. Methods: By using nasal lavage, the relationship of timing, severity, and etiology of viral respiratory infections during infancy to wheezing in the 3rd year of life was evaluated. In addition, genetic and environmental factors that could modify risk of infections and wheezing prevalence were analyzed. Results: Risk factors for 3rd year wheezing were passive smoke exposure (odds ratio [OR] 5 2.1), older siblings (OR 5 2.5), allergic sensitization to foods at age 1 year (OR 5 2.0), any moderate to severe respiratory illness without wheezing during infancy (OR 5 3.6), and at least 1 wheezing illness with respiratory syncytial virus (RSV; OR 5 3.0), rhinovirus (OR 5 10) and/or non-rhinovirus/RSV pathogens (OR 5 3.9) during infancy. When viral etiology was considered, 1st-year wheezing illnesses caused by rhinovirus infection were the strongest predictor of subsequent 3rd year wheezing (OR 5 6.6; P < .0001). Moreover, 63% of infants who wheezed during rhinovirus seasons continued to wheeze in the 3rd year of life, compared with only 20% of all other infants (OR 5 6.6; P < .0001). Conclusion: In this population of children at increased risk of developing allergies and asthma, the most significant risk factor for the development of preschool childhood wheezing is the occurrence of symptomatic rhinovirus illnesses during infancy that are clinically and prognostically informative based on their seasonal nature. (J Allergy Clin Immunol 2005;116:571-7.
- …