73 research outputs found

    Magnetic field tuning of antiferromagnetic Yb3_{3}Pt4_{4}

    Get PDF
    We present measurements of the specific heat, magnetization, magnetocaloric effect and magnetic neutron diffraction carried out on single crystals of antiferromagnetic Yb3_{3}Pt4_{4}, where highly localized Yb moments order at TN=2.4T_{\rm N}=2.4 K in zero field. The antiferromagnetic order was suppressed to TN0T_{\rm N}\rightarrow 0 by applying a field of 1.85 T in the abab plane. Magnetocaloric effect measurements show that the antiferromagnetic phase transition is always continuous for TN>0T_{\rm N}>0, although a pronounced step in the magnetization is observed at the critical field in both neutron diffraction and magnetization measurements. These steps sharpen with decreasing temperature, but the related divergences in the magnetic susceptibility are cut off at the lowest temperatures, where the phase line itself becomes vertical in the field-temperature plane. As TN0T_{\rm N}\rightarrow0, the antiferromagnetic transition is increasingly influenced by a quantum critical endpoint, where TNT_{\rm N} ultimately vanishes in a first order phase transition.Comment: 9 pages, 6 figure

    The social aspects of the tree-ring analysis

    Get PDF
    The work presents a study of wooden beams from the Assumption Cathedral in the Island Town of Sviyazhsk. A total of five floating chronologies of different lengths were obtained as a result of tree-ring analysis. Cross-dating demonstrated that the trees were cut in a single time period in the 1560s.peer-reviewe

    Equilibrium susceptibilities of superparamagnets: longitudinal & transverse, quantum & classical

    Full text link
    The equilibrium susceptibility of uniaxial paramagnets is studied in a unified framework which permits to connect traditional results of the theory of quantum paramagnets, \Sm=1/2, 1, 3/2, ..., with molecular magnetic clusters, \Sm\sim5, 10, 20, all the way up, \Sm=30, 50, 100,... to the theory of classical superparamagnets. This is done using standard tools of quantum statistical mechanics and linear response theory (the Kubo correlator formalism). Several features of the temperature dependence of the susceptibility curves (crossovers, peaks, deviations from Curie law) are studied and their scalings with \Sm identified and characterized. Both the longitudinal and transverse susceptibilities are discussed, as well as the response of the ensemble with anisotropy axes oriented at random. For the latter case a simple approximate formula is derived too, and its range of validity assessed, so it could be used in modelization of experiments.Comment: 32 pages, 5 figures. Submitted to J.Phys.Condens.Matte

    The impact of Grey Heron (Ardea cinerea L.) colony on soil biogeochemistry and vegetation: a natural long-term in situ experiment in a planted pine forest

    Get PDF
    Increased anthropogenic pressure including intensification of agricultural activities leads to long-term decline of natural biotopes, with planted forests often considered as promising compensatory response, although reduced biodiversity and ecosystem stability represent their common drawbacks. Here we present a complex investigation of the impact of a large Grey Heron (Ardea cinerea L.) colony on soil biogeochemistry and vegetation in a planted Scots pine forest representing a natural in situ experiment on an engineered ecosystem. After settling around 2006, the colony expanded for 15 years, leading to the intensive deposition of nutrients with feces, food remains and feather thereby considerably altering the local soil biogeochemistry. Thus, lower pH levels around 4.5, 10- and 2-fold higher concentrations of phosphorous and nitrogen, as well as 1.2-fold discrepancies in K, Li, Mn, Zn and Co., respectively, compared to the surrounding control forest area could be observed. Unaltered total organic carbon (Corg) suggests repressed vegetation, as also reflected in the vegetation indices obtained by remote sensing. Moreover, reduced soil microbial diversity with considerable alternations in the relative abundance of Proteobacteria, Firmicutes, Acidobacteriota, Actinobacteriota, Verrucomicrobiota, Gemmatimonadota, Chujaibacter, Rhodanobacter, and Bacillus has been detected. The above alterations to the ecosystem also affected climate stress resilience of the trees indicated by their limited recovery from the major 2010 drought stress, in marked contrast to the surrounding forest (p = 3∙10−5). The complex interplay between geographical, geochemical, microbiological and dendrological characteristics, as well as their manifestation in the vegetation indices is explicitly reflected in the Bayesian network model. Using the Bayesian inference approach, we have confirmed the predictability of biodiversity patterns and trees growth dynamics given the concentrations of keynote soil biogeochemical alternations with correlations R > 0.8 between observations and predictions, indicating the capability of risk assessment that could be further employed for an informed forest management

    The integrated exploration of Raifa lake sediments and dendrochronological analysis of Raifa forestry pines

    Get PDF
    © 2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.The article presents some results of comprehensive research on the properties of Raifa lake bottom sediments and dendrochronological study of Raifa forestry pines (Russia). A preliminary seismic acoustic investigations have been carried out, which allowed to select the sampling site (E 48 ° 43'40.6" N 55 ° 54'21.7"). The length of core sample was 32 cm. Laboratory studies of the core, including the study of the elemental composition, magneto-mineralogical and carcinologic analysis revealed the features of sedimentation mass formation

    The effect of cooling rate on magnetothermal properties of Fe49Rh51

    Get PDF
    We have investigated the effects of quenching rate on the thermal dependence of the magnetic entropy change ΔSM(T) and the magnetic field induced hysteresis loss through the antiferromagnetic (AFM) ↔ ferromagnetic (FM) transformation in bulk Fe49Rh51. Two nearly identical square-prism-shaped samples were subjected to two different temperature cooling regimes; one was rapidly quenched (FQ) in iced-water and another slow cooled (SC) to room temperature at a cooling rate of 2 K/min. The temperature of the AFM ↔ FM transition is similar for both samples, but the FQ sample shows much sharper temperature- and magnetic field-induced magnetization change; in addition, the total magnetization change is 14% larger. In FQ material, the magnetocaloric effect, i.e., ΔSM(T) quickly approaches saturation above 1 T and shows a large peak value at 2 T (13.9 versus 8.9 Jkg−1 K−1 in SC material), but a larger average hysteresis loss \u3cHL\u3eFWHM in the temperature range coinciding with of the full-width at half-maximum of the ΔSM(T) curve

    Magnetism, FeS colloids, and Origins of Life

    Full text link
    A number of features of living systems: reversible interactions and weak bonds underlying motor-dynamics; gel-sol transitions; cellular connected fractal organization; asymmetry in interactions and organization; quantum coherent phenomena; to name some, can have a natural accounting via physicalphysical interactions, which we therefore seek to incorporate by expanding the horizons of `chemistry-only' approaches to the origins of life. It is suggested that the magnetic 'face' of the minerals from the inorganic world, recognized to have played a pivotal role in initiating Life, may throw light on some of these issues. A magnetic environment in the form of rocks in the Hadean Ocean could have enabled the accretion and therefore an ordered confinement of super-paramagnetic colloids within a structured phase. A moderate H-field can help magnetic nano-particles to not only overcome thermal fluctuations but also harness them. Such controlled dynamics brings in the possibility of accessing quantum effects, which together with frustrations in magnetic ordering and hysteresis (a natural mechanism for a primitive memory) could throw light on the birth of biological information which, as Abel argues, requires a combination of order and complexity. This scenario gains strength from observations of scale-free framboidal forms of the greigite mineral, with a magnetic basis of assembly. And greigite's metabolic potential plays a key role in the mound scenario of Russell and coworkers-an expansion of which is suggested for including magnetism.Comment: 42 pages, 5 figures, to be published in A.R. Memorial volume, Ed Krishnaswami Alladi, Springer 201

    Magnetism, entropy, and the first nano-machines

    Full text link
    The efficiency of bio-molecular motors stems from reversible interactions \sim kBTk_B T; weak bonds stabilizing intermediate states (enabling directdirect conversion of chemical into mechanical energy). For their (unknown) origins, we suggest that a magnetically structured phase (MSP) formed via accretion of super-paramagnetic particles (S-PPs) by magnetic rocks on the Hadean Ocean floor had hosted motor-like diffusion of ligand-bound S-PPs through its template-layers; its ramifications range from optical activity to quantum coherence. A gentle flux gradient offers both detailed-balance breaking non-equilibrium and asymmetryasymmetry to a magnetic dipole, undergoing infinitesimal spin-alignment changes. Periodic perturbation of this background by local H-fields of template-partners can lead to periodic high and low-template affinity states, due to the dipole's magnetic degree of freedom. An accompanying magnetocaloric effect allows interchange between system-entropy and bath temperature. We speculate on a magnetic reproducer in a setting close to the mound-scenario of Russell and coworkers that could evolve bio- ratchets.Comment: 17 pages, 1 figur
    corecore