445 research outputs found

    Polygenic and environmental determinants of tics in the Avon Longitudinal Study of Parents and Children

    Get PDF
    Tourette syndrome (TS) is caused by multiple genetic and environmental factors. Yet, little is known about the interplay of these factors in the occurrence of tics. We investigated whether polygenic risk score (PRS) of TS and pregnancy-related factors together enhance the explained variance of tic occurrence in the Avon Longitudinal Study of Parents and Children (Ncases = 612; Ncontrols = 4,201; 50% male; mean age 13.8 years). We included a cumulative adverse pregnancy risk score, maternal anxiety and depression, and maternal smoking and alcohol use during pregnancy. We investigated possible joint effects of genetic and pregnancy-related risk factors using a multivariable approach, and explored mediation effects between the pregnancy-related risk factors in explaining tic presence. The PRS and the cumulative adverse pregnancy risk score, maternal anxiety, or maternal depression explained significantly more variance of tic presence compared to models including only the PRS. Furthermore, we found that the cumulative adverse pregnancy risk score mediated the association between several pregnancy-related factors (maternal anxiety, depression, and smoking) and tics. The combination of a PRS and pregnancy-related risk factors explained more variance of tics in a general population cohort compared to studying these factors in isolation.</p

    Ethanol Activates Immune Response In Lymphoblastoid Cells

    Get PDF
    The short term effects of alcohol on gene expression in brain tissue cannot directly be studied in humans. Because neuroimmune signaling is altered by alcohol, immune cells are a logical, accessible choice to study and might provide biomarkers. RNAseq was used to study the effects of 48 h exposure to ethanol on lymphoblastoid cell lines (LCLs) from 21 alcoholics and 21 controls. Ethanol exposure resulted in differential expression of 4,577 of the 12,526 genes detectably expressed in the LCLs (FDR ≤ 0.05); 55% of these showed increased expression. Cells from alcoholics and controls responded similarly. The genes whose expression changed fell into many pathways. NFκB, neuroinflammation, IL-6, and dendritic cell maturation pathways were activated, consistent with increased signaling by NFκB, TNF, TGFβ, IL1, IL4, IL18, TLR4, and LPS. Signaling by Interferons A and B decreased, which may be responsible for a slightly blunted immune response compared to 24 h ethanol treatment. EIF2, phospholipase C and VEGF signaling were decreased. Baseline gene expression patterns were similar in LCLs from alcoholics and controls. At relaxed stringency (p<0.05), 1164 genes differed, 340 of which were also affected by ethanol. There was a suggestion of compensation, with 77% showing opposing fold changes. Aldosterone signaling and phospholipase C signaling differed. The pattern of expression was consistent with increased signaling by several cytokines and TLR2 in alcoholics. The cholesterol biosynthesis pathway was lower in alcoholics, including a decrease in the rate-limiting enzyme HMGCR. LCLs show many effects of ethanol exposure, some of which might provide biomarkers for AUD and aid in interpreting the effects of genes identified by GWAS

    Genetic and neurophysiological correlates of the age of onset of alcohol use disorders in adolescents and young adults.

    Get PDF
    Discrete time survival analysis was used to assess the age-specific association of event-related oscillations (EROs) and CHRM2 gene variants on the onset of regular alcohol use and alcohol dependence. The subjects were 2,938 adolescents and young adults ages 12-25. Results showed that the CHRM2 gene variants and ERO risk factors had hazards which varied considerably with age. The bulk of the significant age-specific associations occurred in those whose age of onset was under 16. These associations were concentrated in those subjects who at some time took an illicit drug. These results are consistent with studies which associate greater rates of alcohol dependence among those who begin drinking at an early age. The age specificity of the genetic and neurophysiological factors is consistent with recent studies of adolescent brain development, which locate an interval of heightened vulnerability to substance use disorders in the early to mid teens

    Stress-response pathways are altered in the hippocampus of chronic alcoholics

    Get PDF
    The chronic high-level alcohol consumption seen in alcoholism leads to dramatic effects on the hippocampus, including decreased white matter, loss of oligodendrocytes and other glial cells, and inhibition of neurogenesis. Examining gene expression in post mortem hippocampal tissue from 20 alcoholics and 19 controls allowed us to detect differentially expressed genes that may play a role in the risk for alcoholism or whose expression is modified by chronic consumption of alcohol. We identified 639 named genes whose expression significantly differed between alcoholics and controls at a False Discovery Rate (FDR) ≤ 0.20; 52% of these genes differed by at least 1.2-fold. Differentially expressed genes included the glucocorticoid receptor and the related gene FK506 binding protein 5 (FKBP5), UDP glycosyltransferase 8 (UGT8), urea transporter (SLC14A1), zinc transporter (SLC39A10), Interleukin 1 receptor type 1 (IL1R1), thioredoxin interacting protein (TXNIP), and many metallothioneins. Pathways related to inflammation, hypoxia, and stress showed activation, and pathways that play roles in neurogenesis and myelination showed decreases. The cortisol pathway dysregulation and increased inflammation identified here are seen in other stress-related conditions such as depression and post-traumatic stress disorder and most likely play a role in addiction. Many of the detrimental effects on the hippocampus appear to be mediated through NF-κB signaling. Twenty-four of the differentially regulated genes were previously identified by genome-wide association studies of alcohol use disorders; this raises the potential interest of genes not normally associated with alcoholism, such as suppression of tumorigenicity 18 (ST18), BCL2-associated athanogene 3 (BAG3), and von Willebrand factor (VWF)
    • …
    corecore