65 research outputs found

    Challenges in designing an online healthcare platform for personalised patient analytics

    Get PDF
    The growing number and size of clinical medical records (CMRs) represents new opportunities for finding meaningful patterns and patient treatment pathways while at the same time presenting a huge challenge for clinicians. Indeed, CMR repositories share many characteristics of the classical ‘big data’ problem, requiring specialised expertise for data management, extraction, and modelling. In order to help clinicians make better use of their time to process data, they will need more adequate data processing and analytical tools, beyond the capabilities offered by existing general purpose database management systems or database servers. One modelling technique that can readily benefit from the availability of big data, yet remains relatively unexplored is personalised analytics where a model is built for each patient. In this paper, we present a strategy for designing a secure healthcare platform for personalised analytics by focusing on three aspects: (1) data representation, (2) data privacy and security, and (3) personalised analytics enabled by machine learning algorithms

    A novel kernel based approach to arbitrary length symbolic data with application to type 2 diabetes risk

    Get PDF
    Predictive modeling of clinical data is fraught with challenges arising from the manner in which events are recorded. Patients typically fall ill at irregular intervals and experience dissimilar intervention trajectories. This results in irregularly sampled and uneven length data which poses a problem for standard multivariate tools. The alternative of feature extraction into equal-length vectors via methods like Bag-of-Words (BoW) potentially discards useful information. We propose an approach based on a kernel framework in which data is maintained in its native form: discrete sequences of symbols. Kernel functions derived from the edit distance between pairs of sequences may then be utilized in conjunction with support vector machines to classify the data. Our method is evaluated in the context of the prediction task of determining patients likely to develop type 2 diabetes following an earlier episode of elevated blood pressure of 130/80 mmHg. Kernels combined via multi kernel learning achieved an F1-score of 0.96, outperforming classification with SVM 0.63, logistic regression 0.63, Long Short Term Memory 0.61 and Multi-Layer Perceptron 0.54 applied to a BoW representation of the data. We achieved an F1-score of 0.97 on MKL on external dataset. The proposed approach is consequently able to overcome limitations associated with feature-based classification in the context of clinical data

    Can DMD obtain a scene background in color?

    Get PDF
    A background model describes a scene without any foreground objects and has a number of applications, ranging from video surveillance to computational photography. Recent studies have introduced the method of Dynamic Mode Decomposition (DMD) for robustly separating video frames into a background model and foreground components. While the method introduced operates by converting color images to grayscale, we in this study propose a technique to obtain the background model in the color domain. The effectiveness of our technique is demonstrated using a publicly available Scene Background Initialisation (SBI) dataset. Our results both qualitatively and quantitatively show that DMD can successfully obtain a colored background model

    Patient level analytics using self-organising maps: a case study on type-1 diabetes self-care survey responses

    Get PDF
    Survey questionnaires are often heterogeneous because they contain both quantitative (numeric) and qualitative (text) responses, as well as missing values. While traditional, model-based methods are commonly used by clinicians, we deploy Self Organizing Maps (SOM) as a means to visualise the data. In a survey study aiming at understanding the self-care behaviour of 611 patients with Type-1 Diabetes, we show that SOM can be used to (1) identify co-morbidities; (2) to link self-care factors that are dependent on each other; and (3) to visualise individual patient profiles; In evaluation with clinicians and experts in Type-1 Diabetes, the knowledge and insights extracted using SOM correspond well to clinical expectation. Furthermore, the output of SOM in the form of a U-matrix is found to offer an interesting alternative means of visualising patient profiles instead of a usual tabular form

    Movement correction in DCE-MRI through windowed and reconstruction dynamic mode decomposition

    Get PDF
    Images of the kidneys using dynamic contrast enhanced magnetic resonance renography (DCE-MRR) contains unwanted complex organ motion due to respiration. This gives rise to motion artefacts that hinder the clinical assessment of kidney function. However, due to the rapid change in contrast agent within the DCE-MR image sequence, commonly used intensity-based image registration techniques are likely to fail. While semi-automated approaches involving human experts are a possible alternative, they pose significant drawbacks including inter-observer variability, and the bottleneck introduced through manual inspection of the multiplicity of images produced during a DCE-MRR study. To address this issue, we present a novel automated, registration-free movement correction approach based on windowed and reconstruction variants of dynamic mode decomposition (WR-DMD). Our proposed method is validated on ten different healthy volunteers’ kidney DCEMRI data sets. The results, using block-matching-block evaluation on the image sequence produced by WR-DMD, show the elimination of 99% of mean motion magnitude when compared to the original data sets, thereby demonstrating the viability of automatic movement correction using WR-DMD

    A convex selective segmentation model based on a piece-wise constant metric guided edge detector function

    Get PDF
    The challenge of segmentation for noisy images, especially those that have light in their backgrounds, is still exists in many advanced state-of-the-art segmentation models. Furthermore, it is significantly difficult to segment such images. In this article, we provide a novel variational model for the simultaneous restoration and segmentation of noisy images that have intensity inhomogeneity and high contrast background illumination and light. The suggested concept combines the multi-phase segmentation technology with the statistical approach in terms of local region knowledge and details of circular regions that are, in fact, centered at every pixel to enable in-homogeneous image restoration. The suggested model is expressed as a fuzzy set and is resolved using the multiplier alternating direction minimization approach. Through several tests and numerical simulations with plausible assumptions, we have evaluated the accuracy and resilience of the proposed approach over various kinds of real and synthesized images in the existence of intensity inhomogeneity and light in the background. Additionally, the findings are contrasted with those from cutting-edge two-phase and multi-phase methods, proving the superiority of our proposed approach for images with noise, background light, and inhomogeneity

    One dimensional local binary patterns of electroencephalogram signals for detecting Alzheimer's disease

    Get PDF
    Alzheimer’s disease (AD) is neurodegenerative, caused by the progressive death of brain cells over time. One non-invasive approach to investigate AD is to use electroencephalogram (EEG) signals. The data are usually non-stationary with a strong background activity and noise which makes the analysis difficult leading to low performance in many real world applications including the detection of AD. In this study, we present a method based on local texture changes of EEG signals to differentiate AD patients from the healthy ones, using one-dimensional local binary patterns (1D-LBPs) coupled with support vector machines (SVM). Our proposed method maps the EEG data into a less detailed representation which is less sensitive to noise. A 10 fold cross validation performed at both the epoch and subject level show the discriminancy power of 1D-LBP feature vectors with application to AD data
    corecore