154 research outputs found

    A new type of doubly silylamido-bridged\ud cyclopentadienyl group 4 metal complexes

    Get PDF
    Doubly bridged di(silyl-η-amido)cyclopentadienyltitanium and -zirconium complexes and their related cations as the [(PhCH 2)B(C 6F 5) 3] - salts have been isolated (see structure of the Ti derivative). The neutral benzylzirconium complex was a very efficient catalyst in the presence of methylaluminoxane for producing high molecular weight polyethylene and ethylene-1-hexene copolymer

    Zirconium and hafnium complexes with (allylsilyl)(η-amidosilyl)-η5-cyclopentadienyl ligands: synthesis, structure and reactivity

    Get PDF
    The disubstituted cyclopentadiene C5H4(SiMe2Cl)[SiMe2(CH2CH=CH2)] was isolated by reaction of the lithium salt [Li{C5H4SiMe2(CH2CH=CH2)}] with SiMe2Cl2. It was then treated with NH2tBu and LiNH(2,6-Me2C6H3) to give the (aminosilyl)cyclopentadienes C5H4[SiMe2(CH2CH=CH2)][SiMe2(NHR)], which were further deprotonated to their dilithium salts [Li2{1-SiMe2NR-3-SiMe2(CH2CH=CH2)C5H3}] (R = tBu, 2,6-Me2C6H3). Reactions of the metal halides ZrCl4(THF)2 and HfCl4 with these dilithium salts, followed by alkylation of the resulting dichloro complexes, afforded the (η1-amidosilyl)-η5-cyclopentadienyl complexes [M{η5-C5H3(SiMe2-η1-NR)[SiMe2(CH2CH=CH2)]}X2] (R = tBu, 2,6-Me2C6H3; X = Cl, Me, CH2Ph; M = Zr, Hf). Only the bis(iminoacyl) complexes [M{η5-C5H3(SiMe2-η1-NtBu)[SiMe2(CH2CH=CH2)]}{η2-CR=N(2,6-Me2C6H3)}2] (M = Zr, Hf; R = Me, CH2Ph) could be isolated when the dialkylzirconium and -hafnium complexes were treated with CN(2,6-Me2C6H3); these were slowly transformed into the C–C-coupled diazametallacyclopentene compounds [M{η5-C5H3(SiMe2-η1-NtBu)[SiMe2(CH2CH=CH2)]}{η1-N(2,6-Me2C6H3)-CR=CR-η1-N(2,6-Me2C6H3)}] (R = Me, CH2Ph, M = Zr; R = Me, M = Hf) when their toluene solutions were heated to 70 °C–80 °C for long periods (2–4 d). The structural characterisation of all of the new compounds is described and the molecular structure of the dimeric dichlorozirconocene [ZrCl(μ-Cl){η5-C5H3(SiMe2-η1-NtBu)[SiMe2(CH2CH=CH2)]}]2, was determined by X-ray diffraction methods. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005

    Preparation of imido pentamethylcyclopentadienyl molybdenum(IV) complexes. X-ray molecular structure of cis-[MoCp*CI(η-NtBu)]2·C6H6

    Get PDF
    The reduction of [MoCp * Cl2(NtBu)] 1 with 1 equiv. of 10% sodium amalgam in the presence of CN(2,6-Me2C6H3) yields the green crystalline compound [MoCp * Cl(NtBuCN(2,6-Me2C6H3)] 2 which can be alkylated by MgClMe to give [MoCp * Me(NtBu)CN(2,6-Me2C6H3)] 3. The same reduction in the absence of ligands leads to an almost equimolar mixture of compounds identified as cis- and trans-[MoCp* (μ-Cl)(NtBu)]24 which are slowly and irreversibly transformed into cis-[MoCp * Cl(μ-NtBu)]25 by heating a toluene solution at 90°C. Compounds (cis + trans)-4 and cis-5 are alkylated by MgClMe leading to the same final methyl derivative [MoCp * Me(μ-NtBu)]26, and react with ethylene to yield the adduct [MoCp * Cl(NtBu)(C2H4)] 7. All new complexes were characterized by their analytical composition, IR and NMR spectroscopy and mass spectrometry, and the structure of the benzene solvate of cis-[MoCp * Cl(μ-NtBu)]25 was determined by X-ray diffraction methods.Italian Consiglio Nazionale delle Ricerch

    tert-Butylsilylcyclopentadienyl Group 4 metal complexes

    Get PDF
    New Group 4 metal t-butyldimethylsilylcyclopentadienyl complexes [MCpCp′Cl2] (Cp=η5-C5H5; Cp′=η5-C5H4SiMe2tBu; M=Ti 4, Zr 5, Hf 6) were prepared by reaction of 1 equiv. of the lithium (2) and thallium (3) salts of t-butyldimethylsilylcyclopentadiene 1 with the monocyclopentadienyl complexes [MCpCl3·DME] (M=Zr, Hf) and [TiCpCl3], respectively. A similar reaction using ZrCl4(THF)2 and HfCl4 with 2 equiv. of the lithium salt 2 gave the symmetric [MCp′2Cl2] ( M=Zr 7, Hf 8) metallocenes. Alkylation of these compounds with 2 equiv. of MgRCl (R=Me, CH2Ph) and Li(CH2CMe2Ph) afforded the dialkyl complexes [MCpCp′R2] (R=Me, M=Zr 9, Hf 10; R=CH2Ph, M=Ti 11, Zr 12, Hf 13), [ZrCp′2(CH2Ph)2] 14 and [ZrCpCp′(CH2CMe2Ph)2] 17. A Similar reaction of 5 with 1 equiv. of Mg(CH2Ph)Cl gave the monobenzyl compound [ZrCpCp′Cl(CH2Ph)] (15). Hydrolysis of 15 with a stoichiometric amount of water afforded the dinuclear μ-oxo compound [(ZrCpCp′Cl)2(μ-O)] (16). All of the new complexes reported were characterized by elemental analysis and 1H and 13C NMR spectroscopy and the molecular structures of 4 and 16 were determined by X-ray diffraction methods. Ethylene polymerization activities were measured for compounds 4–7.Financial support of our work by MCyT (project MAT2001-1309) is gratefully acknowledged. R.W. and C.R. are grateful to DFG, MEC and Repsol S.A. for fellowships

    Cyclopentadienyl dithiocarbamate and dithiophosphate molybdenum and tungsten complexes

    Get PDF
    Reactions of [MCp*Cl4] (M=Mo, W; Cp*=η5-C5Me5) with salts of the N,N-diethyldithiocarbamate [Et2dtc]− and O,O′-diethyldithiophosphate [Et2dtp]− anions yield the paramagnetic metal(V) complexes [MCp*Cl3(Et2dtc)] (M=Mo, W) and [MCp*Cl3(Et2dtp)] (M=Mo, W), respectively. Hydrolytic oxidation of both dithiocarbamate–molybdenum complexes with aqueous hydrogen peroxide leads to η2-coordinated peroxo compounds [MoCp*Cl(O–O)O], which were also obtained from [MoCp*Cl4]. The related complexes [MCp′Cl(O–O)O] (M=Mo, Cp′=η5-C5H5; M=W, Cp′=η5-C5Me5) were isolated in a similar way. Reduction of a THF solution of [MoCp*Cl4] with one equivalent of 10% Na/Hg followed by the addition of one equivalent of ammonium dithiophosphate gives [MoCp*Cl2(Et2dtp)] which was also obtained via the reaction of [MoCp*Cl3(Et2dtp)] with MeMgCl, whereas reduction with three equivalents of Na/Hg in the presence of CNtBu leads to the molybdenum(II) complex [MoCp*(Et2dtp)(CNtBu)2] in high yield. All these compounds were characterized by elemental analysis, IR, 1H- and 13C-NMR spectroscopy, magnetic susceptibility measurements and the molecular structures of [Mo(η5-C5H5)Cl(O–O)O] and [Mo(η5–C5Me5)Cl3{η2-S2P(OEt)2}] were determined by X-ray diffraction studies.Consiglio Nazionale delle Ricerche (Rome
    corecore