207 research outputs found
The Prevention System and Insurance Coverage in the Context of the IV Industrial Revolution
La presente pubblicazione è stata realizzata nell’ambito del progetto di ricerca “Il Testo Unico di salute e sicurezza sul lavoro e la tutela assicurativa alla prova della IV rivoluzione industriale” (BRIC 2018 – ID 08 – CUP E96C18002110003), cofinanziato dall’Inail nell’ambito della linea di finanziamento BRIC e commissionato al Centro studi internazionali e comparati DEAL dell’Università degli Studi di Modena e Reggio Emilia con partner Fondazione ADAPT. Il progetto si è svolto tra aprile 2019 e aprile 2021
Codice semplificato del lavoro
La pubblicazione consiste in una proposta di testo di legge che distilla in meno di 60 articoli, da inserire all’interno del Codice civile, il contenuto essenziale della disciplina vigente dei rapporti di lavoro con abrogazione di un enorme volume di norme stratificatesi in precedenza sulla stessa materia, aggiornandone le parti che l’evoluzione tecnologica ha reso più obsolete (controlli a distanza, telelavoro) e perfezionando la coniugazione tra flessibilità dell’organizzazione aziendale e sicurezza economica e professionale della persona che lavora secondo il principio europeo della flexicurity
Evaluating Voting Competence in Persons with Alzheimer Disease
Voting by persons with dementia raises questions about their decision-making capacity. Methods specifically addressing voting capacity of demented people have been proposed in the US, but never tested elsewhere. We translated and adapted the US Competence Assessment Tool for Voting (CAT-V) to the Italian context, using it before 2006 elections for Prime Minister. Consisting of a brief questionnaire, this tool evaluates the following decision-making abilities: understanding nature and effect of voting, expressing a choice, and reasoning about voting choices. Subjects' performance was examined in relation to dementia severity. Of 38 subjects with Alzheimer's disease (AD) enrolled in the study, only three scored the maximum on all CAT-V items. MMSE and CAT-V scores correlated only moderately (r = 0.59; P < 0.0001) with one another, reflecting the variability of subjects' performance at any disease stage. Most participants (90%), although performing poorly on understanding and reasoning items, scored the maximum on the choice measure. Our results imply that voting capacity in AD is only roughly predicted by MMSE scores and may more accurately be measured by a structured questionnaire, such as the CAT-V. Among the decision-making abilities evaluated by the CAT-V, expressing a choice was by far the least affected by the dementing process
Correction to: The role of molecular imaging in the frame of the revised dementia with Lewy body criteria
In the article mentioned above all authors were assigned affiliation 14, which is wrong. Affiliation 14 belongs only to author Agostino Chiaravalloti
Occipital atrophy signature in prodromal Lewy bodies disease
Introduction: Dementia with Lewy bodies (DLB) is typically characterized by parietal, temporal, and occipital atrophy, but less is known about the newly defined prodromal phases. The objective of this study was to evaluate structural brain alterations in prodromal DLB (p-DLB) as compared to healthy controls (HC) and full-blown dementia (DLB-DEM). Methods: The study included 42 DLB patients (n = 20 p-DLB; n = 22 DLB-DEM) and 27 HC with a standardized neurological assessment and 3-tesla magnetic resonance imaging. Voxel-wise analyses on gray-matter and cortical thickness were implemented to evaluate differences between p-DLB, DLB-DEM, and HC. Results: p-DLB and DLB-DEM exhibited reduced occipital and posterior parieto-temporal volume and thickness, extending from prodromal to dementia stages. Occipital atrophy was more sensitive than insular atrophy in differentiating p-DLB and HC. Occipital atrophy correlated to frontotemporal structural damage increasing from p-DLB to DLB-DEM. Discussion: Occipital and posterior-temporal structural alterations are an early signature of the DLB continuum and correlate with a long-distance pattern of atrophy
Recommended from our members
Automatic multispectral MRI segmentation of human hippocampal subfields: an evaluation of multicentric test–retest reproducibility
Accurate and reproducible automated segmentation of human hippocampal subfields is of interest to study their roles in cognitive functions and disease processes. Multispectral structural MRI methods have been proposed to improve automated hippocampal subfield segmentation accuracy, but the reproducibility in a multicentric setting is, to date, not well characterized. Here, we assessed test–retest reproducibility of FreeSurfer 6.0 hippocampal subfield segmentations using multispectral MRI analysis pipelines (22 healthy subjects scanned twice, a week apart, at four 3T MRI sites). The harmonized MRI protocol included two 3D-T1, a 3D-FLAIR, and a high-resolution 2D-T2. After within-session T1 averaging, subfield volumes were segmented using three pipelines with different multispectral data: two longitudinal (“long_T1s” and “long_T1s_FLAIR”) and one cross-sectional (“long_T1s_FLAIR_crossT2”). Volume reproducibility was quantified in magnitude (reproducibility error—RE) and space (DICE coefficient). RE was lower in all hippocampal subfields, except for hippocampal fissure, using the longitudinal pipelines compared to long_T1s_FLAIR_crossT2 (average RE reduction of 0.4–3.6%). Similarly, the longitudinal pipelines showed a higher spatial reproducibility (1.1–7.8% of DICE improvement) in all hippocampal structures compared to long_T1s_FLAIR_crossT2. Moreover, long_T1s_FLAIR provided a small but significant RE improvement in comparison to long_T1s (p = 0.015), whereas no significant DICE differences were found. In addition, structures with volumes larger than 200 mm3 had better RE (1–2%) and DICE (0.7–0.95) than smaller structures. In summary, our study suggests that the most reproducible hippocampal subfield FreeSurfer segmentations are derived from a longitudinal pipeline using 3D-T1s and 3D-FLAIR. Adapting a longitudinal pipeline to include high-resolution 2D-T2 may lead to further improvements
PMCA-based detection of prions in the olfactory mucosa of patients with Sporadic Creutzfeldt-Jakob Disease
Sporadic Creutzfeldt-Jakob disease (sCJD) is a rare neurodegenerative disorder caused by the conformational conversion of the prion protein (PrPC) into an abnormally folded form, named prion (or PrPSc). The combination of the polymorphism at codon 129 of the PrP gene (coding either methionine or valine) with the biochemical feature of the proteinase-K resistant PrP (generating either PrPSc type 1 or 2) gives rise to different PrPSc strains, which cause variable phenotypes of sCJD. The definitive diagnosis of sCJD and its classification can be achieved only post-mortem after PrPSc identification and characterization in the brain. By exploiting the Real-Time Quaking-Induced Conversion (RT-QuIC) assay, traces of PrPSc were found in the olfactory mucosa (OM) of sCJD patients, thus demonstrating that PrPSc is not confined to the brain. Here, we have optimized another technique, named protein misfolding cyclic amplification (PMCA) for detecting PrPSc in OM samples of sCJD patients. OM samples were collected from 27 sCJD and 2 genetic CJD patients (E200K). Samples from 34 patients with other neurodegenerative disorders were included as controls. Brains were collected from 26 sCJD patients and 16 of them underwent OM collection. Brain and OM samples were subjected to PMCA using the brains of transgenic mice expressing human PrPC with methionine at codon 129 as reaction substrates. The amplified products were analyzed by Western blot after proteinase K digestion. Quantitative PMCA was performed to estimate PrPSc concentration in OM. PMCA enabled the detection of prions in OM samples with 79.3% sensitivity and 100% specificity. Except for a few cases, a predominant type 1 PrPSc was generated, regardless of the tissues analyzed. Notably, all amplified PrPSc were less resistant to PK compared to the original strain. In conclusion, although the optimized PMCA did not consent to recognize sCJD subtypes from the analysis of OM collected from living patients, it enabled us to estimate for the first time the amount of prions accumulating in this biological tissue. Further assay optimizations are needed to faithfully amplify peripheral prions whose recognition could lead to a better diagnosis and selection of patients for future clinical trials
CSF glial markers are elevated in a subset of patients with genetic frontotemporal dementia
Background: Neuroinflammation has been shown to be an important pathophysiological disease mechanism in frontotemporal dementia (FTD). This includes activation of microglia, a process that can be measured in life through assaying different glia-derived biomarkers in cerebrospinal fluid. However, only a few studies so far have taken place in FTD, and even fewer focusing on the genetic forms of FTD. Methods: We investigated the cerebrospinal fluid concentrations of TREM2, YKL-40 and chitotriosidase using immunoassays in 183 participants from the Genetic FTD Initiative (GENFI) study: 49 C9orf72 (36 presymptomatic, 13 symptomatic), 49 GRN (37 presymptomatic, 12 symptomatic) and 23 MAPT (16 presymptomatic, 7 symptomatic) mutation carriers and 62 mutation-negative controls. Concentrations were compared between groups using a linear regression model adjusting for age and sex, with 95% bias-corrected bootstrapped confidence intervals. Concentrations in each group were correlated with the Mini-Mental State Examination (MMSE) score using non-parametric partial correlations adjusting for age. Age-adjusted z-scores were also created for the concentration of markers in each participant, investigating how many had a value above the 95th percentile of controls. Results: Only chitotriosidase in symptomatic GRN mutation carriers had a concentration significantly higher than controls. No group had higher TREM2 or YKL-40 concentrations than controls after adjusting for age and sex. There was a significant negative correlation of chitotriosidase concentration with MMSE in presymptomatic GRN mutation carriers. In the symptomatic groups, for TREM2 31% of C9orf72, 25% of GRN, and 14% of MAPT mutation carriers had a concentration above the 95th percentile of controls. For YKL-40 this was 8% C9orf72, 8% GRN and 0% MAPT mutation carriers, whilst for chitotriosidase it was 23% C9orf72, 50% GRN, and 29% MAPT mutation carriers. Conclusions: Although chitotriosidase concentrations in GRN mutation carriers were the only significantly raised glia-derived biomarker as a group, a subset of mutation carriers in all three groups, particularly for chitotriosidase and TREM2, had elevated concentrations. Further work is required to understand the variability in concentrations and the extent of neuroinflammation across the genetic forms of FTD. However, the current findings suggest limited utility of these measures in forthcoming trials
Longitudinal Cognitive Changes in Genetic Frontotemporal Dementia Within the GENFI Cohort
Background and ObjectivesDisease-modifying therapeutic trials for genetic frontotemporal dementia (FTD) are underway, but sensitive cognitive outcome measures are lacking. The aim of this study was to identify such cognitive tests in early stage FTD by investigating cognitive decline in a large cohort of genetic FTD pathogenic variant carriers and by investigating whether gene-specific differences are moderated by disease stage (asymptomatic, prodromal, and symptomatic).MethodsC9orf72, GRN, and MAPT pathogenic variant carriers as well as controls underwent a yearly neuropsychological assessment covering 8 cognitive domains as part of the Genetic FTD Initiative, a prospective multicenter cohort study. Pathogenic variant carriers were stratified according to disease stage using the global Clinical Dementia Rating (CDR) plus National Alzheimer\u27s Coordinating Center (NACC) FTLD score (0, 0.5, or ≥1). Linear mixed-effects models were used to investigate differences between genetic groups and disease stages as well as the 3-way interaction between time, genetic group, and disease stage.ResultsA total of 207 C9orf72, 206 GRN, and 86 MAPT pathogenic variant carriers and 255 controls were included. C9orf72 pathogenic variant carriers performed lower on attention, executive function, and verbal fluency from CDR plus NACC FTLD 0 onwards, with relatively minimal decline over time regardless of the CDR plus NACC FTLD score (i.e., disease progression). The cognitive profile in MAPT pathogenic variant carriers was characterized by lower memory performance at CDR plus NACC FTLD 0.5, with decline over time in language from the CDR plus NACC FTLD 0.5 stage onwards, and executive dysfunction rapidly developing at CDR plus NACC FTLD ≥1. GRN pathogenic variant carriers declined on verbal fluency and visuoconstruction in the CDR plus NACC FTLD 0.5 stage, with progressive decline in other cognitive domains starting at CDR plus NACC FTLD ≥1.DiscussionWe confirmed cognitive decline in the asymptomatic and prodromal stage of genetic FTD. Specifically, tests for attention, executive function, language, and memory showed clear differences between genetic groups and controls at baseline, but the speed of change over time differed depending on genetic group and disease stage. This confirms the value of neuropsychological assessment in tracking clinical onset and progression and could inform clinical trials in selecting sensitive end points for measuring treatment effects as well as characterizing the best time window for starting treatment
Loss of brainstem white matter predicts onset and motor neuron symptoms in C9orf72 expansion carriers:a GENFI study
Background and objectives: The C9orf72 expansion is the most common genetic cause of frontotemporal dementia (FTD) and/or motor neuron disease (MND). Corticospinal degeneration has been described in post-mortem neuropathological studies in these patients, especially in those with MND. We used MRI to analyze white matter (WM) volumes in presymptomatic and symptomatic C9orf72 expansion carriers and investigated whether its measure may be helpful in predicting the onset of symptoms. Methods: We studied 102 presymptomatic C9orf72 mutation carriers, 52 symptomatic carriers: 42 suffering from FTD and 11 from MND, and 75 non-carriers from the Genetic Frontotemporal dementia Initiative (GENFI). All subjects underwent T1-MRI acquisition. We used FreeSurfer to estimate the volume proportion of WM in the brainstem regions (midbrain, pons, and medulla oblongata). We calculated group differences with ANOVA tests and performed linear and non-linear regressions to assess group-by-age interactions. Results: A reduced WM ratio was found in all brainstem subregions in symptomatic carriers compared to both noncarriers and pre-symptomatic carriers. Within symptomatic carriers, MND patients presented a lower ratio in pons and medulla oblongata compared with FTD patients. No differences were found between presymptomatic carriers and non-carriers. Clinical severity was negatively associated with the WM ratio. C9orf72 carriers presented greater age-related WM loss than non-carriers, with MND patients showing significantly more atrophy in pons and medulla oblongata. Discussion: We find consistent brainstem WM loss in C9orf72 symptomatic carriers with differences related to the clinical phenotype supporting the use of brainstem measures as neuroimaging biomarkers for disease tracking.</p
- …