5,298 research outputs found

    Negatively co-operative ligand binding

    Full text link

    A proposed measurement of the ß asymmetry in neutron decay with the Los Alamos Ultra-Cold Neutron Source

    Get PDF
    This article reviews the status of an experiment to study the neutron spin-electron angular correlation with the Los Alamos Ultra-Cold Neutron (UCN) source. The experiment will generate UCNs from a novel solid deuterium, spallation source, and polarize them in a solenoid magnetic field. The experiment spectrometer will consist of a neutron decay region in a solenoid magnetic field combined with several different detector possibilities. An electron beam and a magnetic spectrometer will provide a precise, absolute calibration for these detectors. An A-correlation measurement with a relative precision of 0.2% is expected by the end of 2002

    A double-sided silicon micro-strip super-module for the ATLAS inner detector upgrade in the high-luminosity LHC

    Get PDF
    The ATLAS experiment is a general purpose detector aiming to fully exploit the discovery potential of the Large Hadron Collider (LHC) at CERN. It is foreseen that after several years of successful data-taking, the LHC physics programme will be extended in the so-called High-Luminosity LHC, where the instantaneous luminosity will be increased up to 5 × 1034 cm−2 s−1. For ATLAS, an upgrade scenario will imply the complete replacement of its internal tracker, as the existing detector will not provide the required performance due to the cumulated radiation damage and the increase in the detector occupancy. The current baseline layout for the new ATLAS tracker is an all-silicon-based detector, with pixel sensors in the inner layers and silicon micro-strip detectors at intermediate and outer radii. The super-module is an integration concept proposed for the strip region of the future ATLAS tracker, where double-sided stereo silicon micro-strip modules are assembled into a low-mass local support structure. An electrical super-module prototype for eight double-sided strip modules has been constructed. The aim is to exercise the multi-module readout chain and to investigate the noise performance of such a system. In this paper, the main components of the current super-module prototype are described and its electrical performance is presented in detail

    First Measurement of the Neutron β\beta-Asymmetry with Ultracold Neutrons

    Get PDF
    We report the first measurement of angular correlation parameters in neutron β\beta-decay using polarized ultracold neutrons (UCN). We utilize UCN with energies below about 200 neV, which we guide and store for 30\sim 30 s in a Cu decay volume. The μnB\vec{\mu}_n \cdot \vec{B} potential of a static 7 T field external to the decay volume provides a 420 neV potential energy barrier to the spin state parallel to the field, polarizing the UCN before they pass through an adiabatic fast passage (AFP) spin-flipper and enter a decay volume, situated within a 1 T, 2×2π2 \times 2\pi superconducting solenoidal spectrometer. We determine a value for the β\beta-asymmetry parameter A0A_0, proportional to the angular correlation between the neutron polarization and the electron momentum, of A0=0.1138±0.0051A_0 = -0.1138 \pm 0.0051.Comment: 4 pages, 2 figures, 1 table, submitted to Phys. Rev. Let

    A double-sided, shield-less stave prototype for the ATLAS upgrade strip tracker for the high luminosity LHC

    Get PDF
    A detailed description of the integration structures for the barrel region of the silicon strips tracker of the ATLAS Phase-II upgrade for the upgrade of the Large Hadron Collider, the so-called High Luminosity LHC (HL-LHC), is presented. This paper focuses on one of the latest demonstrator prototypes recently assembled, with numerous unique features. It consists of a shortened, shield-less, and double sided stave, with two candidate power distributions implemented. Thermal and electrical performances of the prototype are presented, as well as a description of the assembly procedures and tools

    Measurement of Longitudinal Spin Transfer to Lambda Hyperons in Deep-Inelastic Lepton Scattering

    Get PDF
    Spin transfer in deep-inelastic Lambda electroproduction has been studied with the HERMES detector using the 27.6 GeV polarized positron beam in the HERA storage ring. For an average fractional energy transfer = 0.45, the longitudinal spin transfer from the virtual photon to the Lambda has been extracted. The spin transfer along the Lambda momentum direction is found to be 0.11 +/- 0.17 (stat) +/- 0.03 (sys); similar values are found for other possible choices for the longitudinal spin direction of the Lambda. This result is the most precise value obtained to date from deep-inelastic scattering with charged lepton beams, and is sensitive to polarized up quark fragmentation to hyperon states. The experimental result is found to be in general agreement with various models of the Lambda spin content, and is consistent with the assumption of helicity conservation in the fragmentation process.Comment: 8 pages, 3 figures; new version has an expanded discussion and small format change

    Beam-Induced Nuclear Depolarisation in a Gaseous Polarised Hydrogen Target

    Get PDF
    Spin-polarised atomic hydrogen is used as a gaseous polarised proton target in high energy and nuclear physics experiments operating with internal beams in storage rings. When such beams are intense and bunched, this type of target can be depolarised by a resonant interaction with the transient magnetic field generated by the beam bunches. This effect has been studied with the HERA positron beam in the HERMES experiment at DESY. Resonances have been observed and a simple analytic model has been used to explain their shape and position. Operating conditions for the experiment have been found where there is no significant target depolarisation due to this effect.Comment: REVTEX, 6 pages, 5 figure

    First Results from KamLAND: Evidence for Reactor Anti-Neutrino Disappearance

    Get PDF
    KamLAND has been used to measure the flux of νˉe\bar{\nu}_e's from distant nuclear reactors. In an exposure of 162 ton\cdotyr (145.1 days) the ratio of the number of observed inverse β\beta-decay events to the expected number of events without disappearance is 0.611±0.085(stat)±0.041(syst)0.611\pm 0.085 {\rm (stat)} \pm 0.041 {\rm (syst)} for νˉe\bar{\nu}_e energies >> 3.4 MeV. The deficit of events is inconsistent with the expected rate for standard νˉe\bar{\nu}_e propagation at the 99.95% confidence level. In the context of two-flavor neutrino oscillations with CPT invariance, these results exclude all oscillation solutions but the `Large Mixing Angle' solution to the solar neutrino problem using reactor νˉe\bar{\nu}_e sources.Comment: 6 pages, 6 figure
    corecore