23 research outputs found
Biomedical Discovery Acceleration, with Applications to Craniofacial Development
The profusion of high-throughput instruments and the explosion of new results in the scientific literature, particularly in molecular biomedicine, is both a blessing and a curse to the bench researcher. Even knowledgeable and experienced scientists can benefit from computational tools that help navigate this vast and rapidly evolving terrain. In this paper, we describe a novel computational approach to this challenge, a knowledge-based system that combines reading, reasoning, and reporting methods to facilitate analysis of experimental data. Reading methods extract information from external resources, either by parsing structured data or using biomedical language processing to extract information from unstructured data, and track knowledge provenance. Reasoning methods enrich the knowledge that results from reading by, for example, noting two genes that are annotated to the same ontology term or database entry. Reasoning is also used to combine all sources into a knowledge network that represents the integration of all sorts of relationships between a pair of genes, and to calculate a combined reliability score. Reporting methods combine the knowledge network with a congruent network constructed from experimental data and visualize the combined network in a tool that facilitates the knowledge-based analysis of that data. An implementation of this approach, called the Hanalyzer, is demonstrated on a large-scale gene expression array dataset relevant to craniofacial development. The use of the tool was critical in the creation of hypotheses regarding the roles of four genes never previously characterized as involved in craniofacial development; each of these hypotheses was validated by further experimental work
Claudin 13, a Member of the Claudin Family Regulated in Mouse Stress Induced Erythropoiesis
Mammals are able to rapidly produce red blood cells in response to stress. The molecular pathways used in this process are important in understanding responses to anaemia in multiple biological settings. Here we characterise the novel gene Claudin 13 (Cldn13), a member of the Claudin family of tight junction proteins using RNA expression, microarray and phylogenetic analysis. We present evidence that Cldn13 appears to be co-ordinately regulated as part of a stress induced erythropoiesis pathway and is a mouse-specific gene mainly expressed in tissues associated with haematopoietic function. CLDN13 phylogenetically groups with its genomic neighbour CLDN4, a conserved tight junction protein with a putative role in epithelial to mesenchymal transition, suggesting a recent duplication event. Mechanisms of mammalian stress erythropoiesis are of importance in anaemic responses and expression microarray analyses demonstrate that Cldn13 is the most abundant Claudin in spleen from mice infected with Trypanosoma congolense. In mice prone to anaemia (C57BL/6), its expression is reduced compared to strains which display a less severe anaemic response (A/J and BALB/c) and is differentially regulated in spleen during disease progression. Genes clustering with Cldn13 on microarrays are key regulators of erythropoiesis (Tal1, Trim10, E2f2), erythrocyte membrane proteins (Rhd and Gypa), associated with red cell volume (Tmcc2) and indirectly associated with erythropoietic pathways (Cdca8, Cdkn2d, Cenpk). Relationships between genes appearing co-ordinately regulated with Cldn13 post-infection suggest new insights into the molecular regulation and pathways involved in stress induced erythropoiesis and suggest a novel, previously unreported role for claudins in correct cell polarisation and protein partitioning prior to erythroblast enucleation
RA-MAP, molecular immunological landscapes in early rheumatoid arthritis and healthy vaccine recipients
Rheumatoid arthritis (RA) is a chronic inflammatory disorder with poorly defined aetiology characterised by synovial inflammation with variable disease severity and drug responsiveness. To investigate the peripheral blood immune cell landscape of early, drug naive RA, we performed comprehensive clinical and molecular profiling of 267 RA patients and 52 healthy vaccine recipients for up to 18 months to establish a high quality sample biobank including plasma, serum, peripheral blood cells, urine, genomic DNA, RNA from whole blood, lymphocyte and monocyte subsets. We have performed extensive multi-omic immune phenotyping, including genomic, metabolomic, proteomic, transcriptomic and autoantibody profiling. We anticipate that these detailed clinical and molecular data will serve as a fundamental resource offering insights into immune-mediated disease pathogenesis, progression and therapeutic response, ultimately contributing to the development and application of targeted therapies for RA.</p
Novel methodology to discern predictors of remission and patterns of disease activity over time using rheumatoid arthritis clinical trials data
Objectives To identify predictors of remission and disease activity patterns in patients with rheumatoid arthritis (RA) using individual participant data (IPD) from clinical trials. Methods Phases II and III clinical trials completed between 2002 and 2012 were identified by systematic literature review and contact with UK market authorisation holders. Anonymised baseline and follow-up IPD from non-biological arms were amalgamated. Multiple imputation was used to handle missing outcome and covariate information. Random effects logistic regression was used to identify predictors of remission, measured by the DAS28 score at 6 months. Novel latent class mixed models characterised DAS28 over time.Results IPD of 3290 participants from 18 trials were included. Of these participants, 92% received methotrexate (MTX). Remission rates were estimated at 8.4% (95%CI: 7.4%-9.5%) overall, 17% (95%CI: 14.8%-19.4%) for MTX-naïve early RA patients, and 3.2% (95%CI: 2.4%-4.3%) for those with prior MTX exposure at entry. In prior MTX-exposed patients, lower baseline DAS28 and MTX-re-initiation were associated with remission. In MTX-naïve patients, being young, white, male, with better functional and mental health, lower baseline DAS28 and receiving concomitant glucocorticoids were associated with remission. Three DAS28 trajectory sub-populations were identified in MTX-naïve and MTX-exposed patients. A number of variables were associated with sub-population membership and DAS28 levels within sub-populations. Conclusions Predictors of remission differed between MTX-naïve and prior MTX-exposed patients at entry. Latent class mixed models supported differential non-biologic therapy response, with three distinct trajectories observed in both MTX-naïve and MTX-exposed patients. Findings should be useful when designing future RA trials and interpreting results of biomarker studies. <br/
Semantic subgraph searching in integrated biological graphs : an approach for mining drug repositioning networks
Presented at: International Symposium on Integrative Bioinformatics (10th : 2014), 12th - 14th May 2014. Newcastle University, U
The support of human genetic evidence for approved drug indications
Over a quarter of drugs that enter clinical development fail because they are ineffective. Growing insight into genes that influence human disease may affect how drug targets and indications are selected. However, there is little guidance about how much weight should be given to genetic evidence in making these key decisions. To answer this question, we investigated how well the current archive of genetic evidence predicts drug mechanisms. We found that, among well-studied indications, the proportion of drug mechanisms with direct genetic support increases significantly across the drug development pipeline, from 2.0% at the preclinical stage to 8.2% among mechanisms for approved drugs, and varies dramatically among disease areas. We estimate that selecting genetically supported targets could double the success rate in clinical development. Therefore, using the growing wealth of human genetic data to select the best targets and indications should have a measurable impact on the successful development of new drugs. © 2015 Nature America, Inc. All rights reserved