75 research outputs found

    Constraints on Metastable Helium in the Atmospheres of WASP-69b and WASP-52b with Ultra-Narrowband Photometry

    Get PDF
    Infrared observations of metastable 23^3S helium absorption with ground- and space-based spectroscopy are rapidly maturing, as this species is a unique probe of exoplanet atmospheres. Specifically, the transit depth in the triplet feature (with vacuum wavelengths near 1083.3 nm) can be used to constrain the temperature and mass loss rate of an exoplanet's upper atmosphere. Here, we present a new photometric technique to measure metastable 23^3S helium absorption using an ultra-narrowband filter (full-width at half-maximum of 0.635 nm) coupled to a beam-shaping diffuser installed in the Wide-field Infrared Camera (WIRC) on the 200-inch Hale Telescope at Palomar Observatory. We use telluric OH lines and a helium arc lamp to characterize refractive effects through the filter and to confirm our understanding of the filter transmission profile. We benchmark our new technique by observing a transit of WASP-69b and detect an excess absorption of 0.498±0.0450.498\pm0.045% (11.1σ\sigma), consistent with previous measurements after considering our bandpass. Then, we use this method to study the inflated gas giant WASP-52b and place a 95th-percentile upper limit on excess absorption in our helium bandpass of 0.47%. Using an atmospheric escape model, we constrain the mass loss rate for WASP-69b to be 5.250.46+0.65×104 MJ/Gyr5.25^{+0.65}_{-0.46}\times10^{-4}~M_\mathrm{J}/\mathrm{Gyr} (3.320.56+0.67×103 MJ/Gyr3.32^{+0.67}_{-0.56}\times10^{-3}~M_\mathrm{J}/\mathrm{Gyr}) at 7,000 K (12,000 K). Additionally, we set an upper limit on the mass loss rate of WASP-52b at these temperatures of 2.1×104 MJ/Gyr2.1\times10^{-4}~M_\mathrm{J}/\mathrm{Gyr} (2.1×103 MJ/Gyr2.1\times10^{-3}~M_\mathrm{J}/\mathrm{Gyr}). These results show that ultra-narrowband photometry can reliably quantify absorption in the metastable helium feature.Comment: 17 pages, 8 figures (figures 1 and 2 are rasterized for arXiv file size compliance), accepted to A

    Constraints on Metastable Helium in the Atmospheres of WASP-69b and WASP-52b with Ultranarrowband Photometry

    Get PDF
    Infrared observations of metastable 2³S helium absorption with ground- and space-based spectroscopy are rapidly maturing, as this species is a unique probe of exoplanet atmospheres. Specifically, the transit depth in the triplet feature (with vacuum wavelengths near 1083.3 nm) can be used to constrain the temperature and mass-loss rate of an exoplanet's upper atmosphere. Here, we present a new photometric technique to measure metastable 23S helium absorption using an ultranarrowband filter (FWHM 0.635 nm) coupled to a beam-shaping diffuser installed in the Wide-field Infrared Camera on the 200 inch Hale Telescope at Palomar Observatory. We use telluric OH lines and a helium arc lamp to characterize refractive effects through the filter and to confirm our understanding of the filter transmission profile. We benchmark our new technique by observing a transit of WASP-69b and detect an excess absorption of 0.498% ± 0.045% (11.1σ), consistent with previous measurements after considering our bandpass. We then use this method to study the inflated gas giant WASP-52b and place a 95th percentile upper limit on excess absorption in our helium bandpass of 0.47%. Using an atmospheric escape model, we constrain the mass-loss rate for WASP-69b to be 5.25^(+0.65)_(−0.46) × 10⁻⁴ M_J/Gyr⁻¹ (3.32^(+0.67)_(−0.56) × 10⁻³ M_J/Gyr⁻¹) at 7000 K (12,000 K). Additionally, we set an upper limit on the mass-loss rate of WASP-52b at these temperatures of 2.1 × 10⁻⁴ M_J/Gyr⁻¹ (2.1×10⁻³ M_J/Gyr⁻¹) . These results show that ultranarrowband photometry can reliably quantify absorption in the metastable helium feature

    Spitzer observations of SN 2014J and properties of mid-IR emission in Type Ia supernovae

    Get PDF
    SN 2014J in M82 is the closest Type Ia supernova (SN Ia) in decades. The proximity allows for detailed studies of supernova physics and provides insights into the circumstellar and interstellar environment. In this work we analyze Spitzer mid-IR data of SN 2014J in the 3.6 and 4.5 {\mu}m wavelength range, together with several other nearby and well-studied SNe Ia. We compile the first composite mid-IR light-curve templates from our sample of SNe~Ia, spanning the range from before peak brightness well into the nebular phase. Our observations indicate that SNe Ia form a very homogeneous class of objects at these wavelengths. Using the low-reddening supernovae for comparison, we constrain possible thermal emission from circumstellar dust around the highly reddened SN 2014J. We also study SNe 2006X and 2007le, where the presence of matter in the circumstellar environment has been suggested. No significant mid-IR excess is detected, allowing us to place upper limits on the amount of pre-existing dust in the circumstellar environment. For SN 2014J, Mdust<105M_{dust} < 10^{-5} M_{\odot} within rdust1017r_{dust} \sim 10^{17} cm, which is insufficient to account for the observed extinction. Similar limits are obtained for SNe 2006X and 2007le.Comment: 9 pages, 4 figures. Published in MNRA

    YSE-PZ: A Transient Survey Management Platform that Empowers the Human-in-the-Loop

    Full text link
    The modern study of astrophysical transients has been transformed by an exponentially growing volume of data. Within the last decade, the transient discovery rate has increased by a factor of ~20, with associated survey data, archival data, and metadata also increasing with the number of discoveries. To manage the data at this increased rate, we require new tools. Here we present YSE-PZ, a transient survey management platform that ingests multiple live streams of transient discovery alerts, identifies the host galaxies of those transients, downloads coincident archival data, and retrieves photometry and spectra from ongoing surveys. YSE-PZ also presents a user with a range of tools to make and support timely and informed transient follow-up decisions. Those subsequent observations enhance transient science and can reveal physics only accessible with rapid follow-up observations. Rather than automating out human interaction, YSE-PZ focuses on accelerating and enhancing human decision making, a role we describe as empowering the human-in-the-loop. Finally, YSE-PZ is built to be flexibly used and deployed; YSE-PZ can support multiple, simultaneous, and independent transient collaborations through group-level data permissions, allowing a user to view the data associated with the union of all groups in which they are a member. YSE-PZ can be used as a local instance installed via Docker or deployed as a service hosted in the cloud. We provide YSE-PZ as an open-source tool for the community.Comment: 23 pages, 9 figures, submitted to PAS

    The peculiar mass-loss history of SN 2014C as revealed through AMI radio observations

    Get PDF
    We present a radio light curve of supernova (SN) 2014C taken with the Arcminute Microkelvin Imager (AMI) Large Array at 15.7 GHz. Optical observations presented by Milisavljevic et al. demonstrated that SN 2014C metamorphosed from a stripped-envelope Type Ib SN into a strongly interacting Type IIn SN within 1 year. The AMI light curve clearly shows two distinct radio peaks, the second being a factor of 4 times more luminous than the first peak. This double bump morphology indicates two distinct phases of mass-loss from the progenitor star with the transition between density regimes occurring at 100-200 days. This reinforces the interpretation that SN 2014C exploded in a low density region before encountering a dense Hydrogen-rich shell of circumstellar material that was likely ejected by the progenitor prior to the explosion. The AMI flux measurements of the first light curve bump are the only reported observations taken within ∼ 50 to ∼ 125 days post-explosion, before the blast-wave encountered the Hydrogen shell. Simplistic synchrotron self-absorption (SSA) and free-free absorption (FFA) modelling suggest that some physical properties of SN 2014C are consistent with the properties of other Type Ibc and IIn SNe. However, our single frequency data does not allow us to distinguish between these two models, which implies they are likely too simplistic to describe the complex environment surrounding this event. Lastly, we present the precise radio location of SN 2014C obtained with eMERLIN, which will be useful for future VLBI observations of the SN

    Discovery of an intermediate-luminosity red transient in M51 and its likely dust-obscured, infrared-variable progenitor

    Get PDF
    We present the discovery of an optical transient (OT) in Messier 51, designated M51 OT2019-1 (also ZTF19aadyppr, AT 2019abn, ATLAS19bzl), by the Zwicky Transient Facility (ZTF). The OT rose over 15 days to an observed luminosity of Mr=13M_r=-13 (νLν=9×106 L{\nu}L_{\nu}=9\times10^6~L_{\odot}), in the luminosity gap between novae and typical supernovae (SNe). Spectra during the outburst show a red continuum, Balmer emission with a velocity width of 400\approx400 km s1^{-1}, Ca II and [Ca II] emission, and absorption features characteristic of an F-type supergiant. The spectra and multiband light curves are similar to the so-called "SN impostors" and intermediate-luminosity red transients (ILRTs). We directly identify the likely progenitor in archival Spitzer Space Telescope imaging with a 4.5 μ4.5~\mum luminosity of M[4.5]12.2M_{[4.5]}\approx-12.2 and a [3.6][4.5][3.6]-[4.5] color redder than 0.74 mag, similar to those of the prototype ILRTs SN 2008S and NGC 300 OT2008-1. Intensive monitoring of M51 with Spitzer further reveals evidence for variability of the progenitor candidate at [4.5] in the years before the OT. The progenitor is not detected in pre-outburst Hubble Space Telescope optical and near-IR images. The optical colors during outburst combined with spectroscopic temperature constraints imply a higher reddening of E(BV)0.7E(B-V)\approx0.7 mag and higher intrinsic luminosity of Mr14.9M_r\approx-14.9 (νLν=5.3×107 L{\nu}L_{\nu}=5.3\times10^7~L_{\odot}) near peak than seen in previous ILRT candidates. Moreover, the extinction estimate is higher on the rise than on the plateau, suggestive of an extended phase of circumstellar dust destruction. These results, enabled by the early discovery of M51 OT2019-1 and extensive pre-outburst archival coverage, offer new clues about the debated origins of ILRTs and may challenge the hypothesis that they arise from the electron-capture induced collapse of extreme asymptotic giant branch stars.Comment: 21 pages, 5 figures, published in ApJ

    SN 2022joj: A Potential Double Detonation with a Thin Helium shell

    Full text link
    We present photometric and spectroscopic data for SN 2022joj, a nearby peculiar Type Ia supernova (SN Ia) with a fast decline rate (Δm15,B=1.4\rm{\Delta m_{15,B}=1.4} mag). SN 2022joj shows exceedingly red colors, with a value of approximately BV1.1{B-V \approx 1.1} mag during its initial stages, beginning from 1111 days before maximum brightness. As it evolves the flux shifts towards the blue end of the spectrum, approaching BV0{B-V \approx 0} mag around maximum light. Furthermore, at maximum light and beyond, the photometry is consistent with that of typical SNe Ia. This unusual behavior extends to its spectral characteristics, which initially displayed a red spectrum and later evolved to exhibit greater consistency with typical SNe Ia. We consider two potential explanations for this behavior: double detonation from a helium shell on a sub-Chandrasekhar-mass white dwarf and Chandrasekhar-mass models with a shallow distribution of 56Ni\rm{^{56}Ni}. The shallow nickel models could not reproduce the red colors in the early light curves. Spectroscopically, we find strong agreement between SN 2022joj and double-detonation models with white dwarf masses around 1 M\rm{M_{\odot}} and thin He-shell between 0.01 and 0.02 M\rm{M_{\odot}}. Moreover, the early red colors are explained by line-blanketing absorption from iron-peak elements created by the double detonation scenario in similar mass ranges. However, the nebular spectra composition in SN 2022joj deviates from expectations for double detonation, as we observe strong [Fe III] emission instead of [Ca II] lines as anticipated from double detonation models. More detailed modeling, e.g., including viewing angle effects, is required to test if double detonation models can explain the nebular spectra

    Keck Infrared Transient Survey I: Survey Description and Data Release 1

    Full text link
    We present the Keck Infrared Transient Survey (KITS), a NASA Key Strategic Mission Support program to obtain near-infrared (NIR) spectra of astrophysical transients of all types, and its first data release, consisting of 105 NIR spectra of 50 transients. Such a data set is essential as we enter a new era of IR astronomy with the James Webb Space Telescope (JWST) and the upcoming Nancy Grace Roman Space Telescope (Roman). NIR spectral templates will be essential to search JWST images for stellar explosions of the first stars and to plan an effective Roma} SN Ia cosmology survey, both key science objectives for mission success. Between 2022 February and 2023 July, we systematically obtained 274 NIR spectra of 146 astronomical transients, representing a significant increase in the number of available NIR spectra in the literature. The first data release includes data from the 2022A semester. We systematically observed three samples: a flux-limited sample that includes all transients <<17 mag in a red optical band (usually ZTF r or ATLAS o bands); a volume-limited sample including all transients within redshift z<0.01z < 0.01 (D50D \approx 50 Mpc); and an SN Ia sample targeting objects at phases and light-curve parameters that had scant existing NIR data in the literature. The flux-limited sample is 39% complete (60% excluding SNe Ia), while the volume-limited sample is 54% complete and is 79% complete to z=0.005z = 0.005. All completeness numbers will rise with the inclusion of data from other telescopes in future data releases. Transient classes observed include common Type Ia and core-collapse supernovae, tidal disruption events (TDEs), luminous red novae, and the newly categorized hydrogen-free/helium-poor interacting Type Icn supernovae. We describe our observing procedures and data reduction using Pypeit, which requires minimal human interaction to ensure reproducibility
    corecore