711 research outputs found
Age Dating of a High-Redshift QSO B1422+231 at Z=3.62 and its Cosmological Implications
The observed Fe II(UV+optical)/Mg II lambda lambda 2796,2804 flux ratio from
a gravitationally lensed quasar B1422+231 at z=3.62 is interpreted in terms of
detailed modeling of photoionization and chemical enrichment in the broad-line
region (BLR) of the host galaxy. The delayed iron enrichment by Type Ia
supernovae is used as a cosmic clock. Our standard model, which matches the Fe
II/Mg II ratio, requires the age of 1.5 Gyr for B1422+231 with a lower bound of
1.3 Gyr, which exceeds the expansion age of the Einstein-de Sitter Omega_0=1
universe at a redshift of 3.62 for any value of the Hubble constant in the
currently accepted range, H_0=60-80 km,s^{-1},Mpc^{-1}. This problem of an age
discrepancy at z=3.62 can be unraveled in a low-density Omega_0<0.2 universe,
either with or without a cosmological constant, depending on the allowable
redshift range of galaxy formation. However, whether the cosmological constant
is a required option in modern cosmology awaits a thorough understanding of
line transfer processes in the BLRs.Comment: 7 pages including 3 figures, to appear in ApJ Letter
Chemo-dynamical evolution of Globular Cluster Systems
We studied the relation between the ratio of rotational velocity to velocity
dispersion and the metallicity (/\sigma_{v}-metallicity relation) of
globular cluster systems (GCS) of disk galaxies by comparing the relation
predicted from simple chemo-dynamical models for the formation and evolution of
disk galaxies with the observed kinematical and chemical properties of their
GCSs. We conclude that proto disk galaxies underwent a slow initial collapse
that was followed by a rapid contraction and derive that the ratio of the
initial collapse time scale to the active star formation time scale is \sim 6
for our Galaxy and \sim 15 for M31. The fundamental formation process of disk
galaxies was simulated based on simple chemo-dynamical models assuming the
conservation of their angular momentum. We suggest that there is a typical
universal pattern in the /\sigma_{v}-metallicity relation of the GCS
of disk galaxies. This picture is supported by the observed properties of GCSs
in the Galaxy and in M31. This relation would deviate from the universal
pattern, however, if large-scale merging events took major role in
chemo-dynamical evolution of galaxies and will reflect the epoch of such
merging events. We discuss the properties of the GCS of M81 and suggest the
presence of past major merging event.Comment: 25 pages, 8 figures, Accepted for publication in the Astrophysical
Journa
The Origin and Distribution of Diffuse Hot Gas in the Spiral Galaxy NGC 3184
Deep Chandra exposures reveal the presence of diffuse X-ray emission with a
luminosity of 1.3x10^{39} ergs s^{-1} from the spiral galaxy NGC 3184. This
appears to be truly diffuse thermal emission distinct from the low-luminosity
LMXB emission. While the unresolved emission from older LMXBs is more uniformly
distributed across the galaxy, the diffuse X-ray emission is concentrated in
areas of younger stellar populations and star forming regions. The surface
brightness of the diffuse emission over the spiral arms is five times greater
than in off-arm regions, and eight times brighter in H II regions than in non-H
II regions. Spectral fits to the diffuse thermal emission are consistent with a
low temperature component, T ~ 1.5 x 10^6 K, plus a higher temperature
component, T ~ 5 x 10^6 K.Comment: 17 pages, 10 figures. Accepted for publication by The Astronomical
Journa
Morphological Evolution and the Ages of Early-Type Galaxies in Clusters
Morphological and spectroscopic studies of high redshift clusters indicate
that a significant fraction of present-day early-type galaxies was transformed
from star forming galaxies at z<1. On the other hand, the slow luminosity
evolution of early-type galaxies and the low scatter in their color-magnitude
relation indicate a high formation redshift of their stars. In this paper we
construct models which reconcile these apparently contradictory lines of
evidence, and we quantify the effects of morphological evolution on the
observed photometric properties of early-type galaxies in distant clusters. We
show that in the case of strong morphological evolution the apparent luminosity
and color evolution of early-type galaxies are similar to that of a single age
stellar population formed at z=infinity, irrespective of the true star
formation history of the galaxies. Furthermore, the scatter in age, and hence
the scatter in color and luminosity, is approximately constant with redshift.
These results are consequences of the ``progenitor bias'': the progenitors of
the youngest low redshift early-type galaxies drop out of the sample at high
redshift. We construct models which reproduce the observed evolution of the
number fraction of early-type galaxies in rich clusters and their color and
luminosity evolution simultaneously. Our modelling indicates that approx. 50%
of early-type galaxies were transformed from other galaxy types at z<1, and
their progenitor galaxies may have had roughly constant star formation rates
prior to morphological transformation. After correcting the observed evolution
of the mean M/L_B ratio for the maximum progenitor bias we find that the mean
luminosity weighted formation redshift of stars in early-type galaxies
z_*=2.0^{+0.3}_{-0.2} for Omega_m=0.3 and Omega_Lambda=0.7. [ABRIDGED]Comment: Accepted for publication in The Astrophysical Journal. 13 pages, 6
figure
Low Mass Stars and the He3 Problem
The prediction of standard chemical evolution models of higher abundances of
He3 at the solar and present-day epochs than are observed indicates a possible
problem with the yield of He3 for stars in the range of 1-3 solar masses.
Because He3 is one of the nuclei produced in Big Bang Nucleosynthesis (BBN), it
is noted that galactic and stellar evolution uncertainties necessarily relax
constraints based on He3. We incorporate into chemical evolution models which
include outflow, the new yields for He3 of Boothroyd & Malaney (1995) which
predict that low mass stars are net destroyers of He3. Since these yields do
not account for the high \he3/H ratio observed in some planetary nebulae, we
also consider the possibility that some fraction of stars in the 1 - 3 solar
mass range do not destroy their He3 in theirpost main-sequence phase. We also
consider the possibility that the gas expelled by stars in these mass ranges
does not mix with the ISM instantaneously thus delaying the He3 produced in
these stars, according to standard yields, from reaching the ISM. In general,
we find that the Galactic D and He3 abundances can be fit regardless of whether
the primordial D/H value is high (2 x 10^{-4}) or low (2.5 x 10^{-5}).Comment: 20 pages, latex, 9 ps figure
Influence of Acute Water Ingestion on Bioelectrical Impedance Analysis Estimates of Body Composition
Body composition estimation is a significant component of health and fitness assessments. Multi-frequency bioelectrical impedance analysis (MFBIA) uses multiple electrical frequencies that travel through body tissues in order to estimate fluid content and body composition. Prior to body composition assessments, it is common to implement a wet fast (i.e., a fasting period that allows water intake); however, the influence of a wet fast as compared to a dry fast (i.e., disallowing water intake) is relatively unknown. PURPOSE: To determine the effects of acute water consumption on MFBIA body composition estimates. METHODS: A randomized crossover study was conducted in 16 adults (8 F, 8 M; age: 22.0 ± 2.9 y; height: 173.6 ± 9.9 cm; weight: 74.3 ± 21.6 kg; body mass index: 24.6 ± 4.7; body fat % [BF%]: 16.7 ± 8.1%). On two occasions, participants reported to the laboratory after an overnight food and fluid fast. After a baseline MFBIA assessment, participants either consumed 11 mL/kg of bottled water (W condition) or consumed no fluid as the control (CON condition). The 11 ml/kg dose of water corresponded to absolute intakes of 531 to 1360 mL. After the water consumption time point, MFBIA tests were performed every 10 minutes for one hour. Participants stood upright for the entire research visit. MFBIA estimates of body mass (BM), fat mass (FM), fat-free mass (FFM), and BF% were analyzed using 2 x 7 (condition x time) analysis of variance with repeated measures, follow-up pairwise comparisons, and evaluation of the partial eta-squared (ηp2) effect sizes. RESULTS: No variables differed between conditions at baseline. Condition x time interactions were present for all variables (BM: pp2=0.89; FM: p=0.0008, ηp2=0.30; BF%: p=0.005, ηp2=0.23) except FFM (p=0.69, ηp2=0.03). Follow-up testing indicated that BM was ~0.6 kg higher in W as compared to CON at all post-baseline time points (pp2=0.32), regardless of condition. CONCLUSION: Up to one hour after ingestion, acute water intake was exclusively detected as increased FM by MFBIA. This contrasts with the common belief that ingesting water prior to bioimpedance tests would result in inflated FFM and decreased BF%. Since body composition estimates never returned to baseline within the hour after water ingestion, it is not clear how long this effect would persist. These results suggest acute water ingestion can produce an inflation of MFBIA body fat estimates for at least one hour. These results indicate that water intake during fasting periods should be considered as part of pre-assessment standardization
Influence of acute water ingestion and prolonged standing on raw bioimpedance and subsequent body fluid and composition estimates
This study evaluated the influence of acute water ingestion and maintaining an upright posture on raw bioimpedance and subsequent estimates of body fluids and composition. Twenty healthy adults participated in a randomized crossover study. In both conditions, an overnight food and fluid fast was followed by an initial multi-frequency bioimpedance assessment (InBody 770). Participants then ingested 11 mL/kg of water (water condition) or did not (control condition) during a 5-minute period. Thereafter, bioimpedance assessments were performed every 10 minutes for one hour with participants remaining upright throughout. Linear mixed effects models were used to examine the influence of condition and time on raw bioimpedance, body fluids, and body composition. Water consumption increased impedance of the arms but not trunk or legs. However, drift in leg impedance was observed, with decreasing values over time in both conditions. No effects of condition on body fluids were detected, but total body water and intracellular water decreased by ~0.5 kg over time in both conditions. Correspondingly, lean body mass did not differ between conditions but decreased over the measurement duration. The increase in body mass in the water condition was detected exclusively as fat mass, with final fat mass values ~1.3 kg higher than baseline and also higher than the control condition. Acute water ingestion and prolonged standing exert practically meaningful effects on relevant bioimpedance variables quantified by a modern, vertical multi-frequency analyzer. These findings have implications for pre-assessment standardization, methodological reporting, and interpretation of assessments
Impact of Fluid Consumption on Estimates of Intracellular, Extracellular, and Total Body Water from Multi-Frequency Bioelectrical Impedance Analysis
Multi-frequency bioelectrical impedance analysis (MFBIA) is able to distinguish between total body water (TBW), extracellular water (ECW) and intracellular water (ICW). Low-frequency currents are thought to primarily pass through ECW, while high-frequency currents pass through all body fluids (i.e., TBW). ICW can then be estimated by subtracting ECW from TBW. As such, MFBIA may have utility for monitoring health conditions resulting in water retention within specific fluid compartments. However, the sensitivity of fluid estimates from MFBIA is not fully established. PURPOSE: To evaluate the effects of acute fluid ingestion on body water estimates produced by a MFBIA analyzer. METHODS: Sixteen adults (8 F, 8 M; age: 22.0 ± 2.9 y; height: 173.6 ± 9.9 cm; weight: 74.3 ± 21.6 kg; body fat %: 16.7 ± 8.1%) participated in a randomized crossover study consisting of two conditions: 1) no fluid ingestion (control; C); and 2) acute ingestion of 11 mL/kg of bottled water (W). In both conditions, participants reported to the laboratory after an overnight food and fluid fast for serial assessments using 8-point standing MFBIA. An initial MFBIA assessment was performed at baseline, followed by a 5-minute period during which water was ingested (W condition) or the participant continued to rest in the lab (C condition). Beginning 10 minutes after this time period, participants were assessed by MFBIA every 10 minutes for one hour. Participants stood upright for the entirety of each research visit. Analysis of variance with repeated measures was used to examine differences in MFBIA estimates of body mass (BM), TBW, ECW, and ICW between conditions and across time. Follow-up pairwise comparisons were performed and partial eta-squared (ηp2) effect sizes were calculated. RESULTS: A group-by-time interaction was present for BM (pp2: 0.89) but not TBW (p=0.74; ηp2: 0.03), ECW (p=0.85; ηp2: 0.02), or ICW (p=0.87; ηp2: 0.05). Follow-up indicated that BM did not differ between conditions at baseline but was ~0.6 ± 0.2 kg higher in the W condition as compared to C at all post-baseline time points (pp2: 0.29 to 0.38). No significant effects were observed for ECW. CONCLUSION: The lack of change in body fluids with acute water ingestion likely indicates that: 1) within one hour, ingested water has not been assimilated into body fluids to the extent that it is detectable by MFBIA; or 2) the quantity of fluid ingestion is below the detection limits of the MFBIA analyzer. In support of the first point, it is likely that bioelectrical currents do not penetrate the gastrointestinal tract, meaning fluids contained therein are unlikely to be detected by MFBIA as fluids
Stars of extragalactic origin in the solar neighborhood
We computed the spatial velocities and the galactic orbital elements using
Hipparcos data for 77 nearest main-sequence F-G-stars with published the iron,
magnesium, and europium abundances determined from high dispersion spectra and
with the ages estimated from theoretical isochrones. A comparison with the
orbital elements of the globular clusters that are known was accreted by our
Galaxy in the past reveals stars of extragalactic origin. We show that the
relative elemental abundance ratios of r- and \alpha- elements in all the
accreted stars differ sharply from those in the stars that are genetically
associated with the Galaxy. According to current theoretical models, europium
is produced mainly in low mass Type II supernovae (SNe II), while magnesium is
synthesized in larger amounts in high mass SN II progenitors. Since all the old
accreted stars of our sample exhibit a significant Eu overabundance relative to
Mg, we conclude that the maximum masses of the SNII progenitors outside the
Galaxy were much lower than those inside it are. On the other hand, only a
small number of young accreted stars exhibit low negative ratios .
The delay of primordial star formation burst and the explosions of high mass
SNe II in a relatively small part of extragalactic space can explain this
situation. We provide evidence that the interstellar medium was weakly mixed at
the early evolutionary stages of the Galaxy formed from a single proto-galactic
cloud and that the maximum mass of the SN II progenitors increased in it with
time simultaneously with the increase in mean metallicity.Comment: Accepted for 2004, Astronomy Letters, Vol. 30, No. 3, P.148-158 15
pages, 3 figure
Body Fat Gain Automatically Increases Lean Mass by Changing the Fat-Free Component of Adipose Tissue
Estimating alterations in lean mass in response to various training interventions is a primary concern for many investigations. However, previous reports have suggested that lean mass estimates from weight loss interventions may be significantly altered by attempting to correct for changes in the fat-free component of adipose tissue (FFAT). This component, consisting primarily of water and protein, has been estimated as ~15% of adipose tissue (AT) mass. While a preliminary examination of this correction method has been conducted in the instance of weight loss, it has yet to be investigated after a period of purposeful weight gain and resistance training. PURPOSE: To examine the impact of corrections for FFAT on estimates of lean mass accretion during a period of weight gain and resistance training. METHODS: Twenty-one resistance trained males underwent 6 weeks of supervised training and followed a hypercaloric diet in order to elicit weight gain. Body composition was assessed pre- and post-intervention via dual energy x-ray absorptiometry (DXA). AT was estimated using DXA-derived fat mass (FM) in the equation: AT = FM/0.85. FFAT was then estimated via the equation: FFAT = 0.15 × AT. Lastly, FFAT was subtracted from DXA-derived lean mass (LMDXA) to yield the new corrected lean mass value (cLM). Changes in LMDXA and cLM in response to the training intervention were calculated, and dependent samples T-tests were employed to determine if significant differences were present between changes in LMDXA and cLM. RESULTS: Significant differences (p ≤ 0.001) were noted for estimates of LM gain, with a larger increase observed for LMDXA as compared to cLM (LMDXA :2.42 ± 1.58kg; cLM: 2.14 ± 1.65kg). CONCLUSION: Correcting DXA-derived LM for the fat-free component of adipose tissue reduces the magnitude of LM accretion after a period of weight gain. However, while LM estimates did significantly differ, the small degree to which they differed indicates questionable practical relevance of such corrections in future investigations
- …