8 research outputs found

    Two-Stepwise Hierarchical Adaptive Threshold Method for Automatic Rapeseed Mapping over Jiangsu Using Harmonized Landsat/Sentinel-2

    No full text
    Rapeseed distribution mapping is a crucial issue for food and oil security, entertainment, and tourism development. Previous studies have used various remote sensing approaches to map rapeseed. However, the time-consuming and labor-intensive sample data used in these supervised classification methods greatly limit the development of large-scale mapping in rapeseed studies. Regarding threshold methods, some empirical thresholding methods still need sample data to select the optimal threshold value, and their accuracies decrease when a fixed threshold is applied in complex and diverse environments. This study first developed the Normalized Difference Rapeseed Index (NDRI), defined as the difference in green and short-wave infrared bands divided by their sum, to find a suitable feature to distinguish rapeseed from other types of crops. Next, a two-stepwise hierarchical adaptive thresholding (THAT) algorithm requiring no training data was used to automatically extract rapeseed in Xinghua. Finally, two adaptive thresholding methods of the standalone Otsu and Otsu with Canny Edge Detection (OCED) were used to extract rapeseed across Jiangsu province. The results show that (1) NDRI can separate rapeseed from other vegetation well; (2) the OCED-THAT method can accurately map rapeseed in Jiangsu with an overall accuracy (OA) of 0.9559 and a Kappa coefficient of 0.8569, and it performed better than the Otsu-THAT method; (3) the OCED-THAT method had a lower but acceptable accuracy than the Random Forest method (OA = 0.9806 and Kappa = 0.9391). This study indicates that the THAT model is a promising automatic method for mapping rapeseed

    Development of an Analytical Method Based on Temperature Controlled Solid-Liquid Extraction Using an Ionic Liquid as Solid Solvent

    No full text
    At the present paper, an analytical method based on temperature controlled solid-liquid extraction (TC-SLE) utilizing a synthesized ionic liquid, (N-butylpyridinium hexafluorophosphate, [BPy]PF6), as solid solvent and phenanthroline (PT) as an extractant was developed to determine micro levels of Fe2+ in tea by PT spectrophotometry. TC-SLE was carried out in two continuous steps: Fe2+ can be completely extracted by PT-[BPy]PF6 or back-extracted at 80 °C and the two phases were separated automatically by cooling to room temperature. Fe2+, after back-extraction, needs 2 mol/L HNO3 as stripping agent and the whole process was determined by PT spectrophotometry at room temperature. The extracted species was neutral Fe(PT)mCl2 (m = 1) according to slope analysis in the Fe2+-[BPy]PF6-PT TC-SLE system. The calibration curve was Y = 0.20856X − 0.000775 (correlation coefficient = 0.99991). The linear calibration range was 0.10–4.50 μg/mL and the limit of detection for Fe2+ is 7.0 × 10−2 μg/mL. In this method, the contents of Fe2+ in Tieguanyin tea were determined with RSDs (n = 5) 3.05% and recoveries in range of 90.6%–108.6%

    Deletion of the mitochondrial calcium uniporter in adipose tissue promotes energy expenditure and alleviates diet-induced obesity

    No full text
    Objective: Studies have shown a correlation between obesity and mitochondrial calcium homeostasis, yet it is unclear whether and how Mcu regulates adipocyte lipid deposition. This study aims to provide new potential target for the treatment of obesity and related metabolic diseases, and to explore the function of Mcu in adipose tissue. Methods: We firstly investigated the role of mitoxantrone, an Mcu inhibitor, in the regulation of glucose and lipid metabolism in mouse adipocytes (3T3-L1 cells). Secondly, C57BL/6J mice were used as a research model to investigate the effects of Mcu inhibitors on fat accumulation and glucose metabolism in mice on a high-fat diet (HFD), and by using CRISPR/Cas9 technology, adipose tissue-specific Mcu knockdown mice (Mcufl/+ AKO) and Mcu knockout of mice (Mcufl/fl AKO) were obtained, to further investigate the direct effects of Mcu on fat deposition, glucose tolerance and insulin sensitivity in mice on a high-fat diet. Results: We found the Mcu inhibitor reduced adipocytes lipid accumulation and adipose tissues mass in mice fed an HFD. Both Mcufl/+ AKO mice and Mcufl/fl AKO mice were resistant to HFD-induced obesity, compared to control mice. Mice with Mcufl/fl AKO showed improved glucose tolerance and insulin sensitivity as well as reduced hepatic lipid accumulation. Mechanistically, inhibition of Mcu promoted mitochondrial biogenesis and adipocyte browning, increase energy expenditure and alleviates diet-induced obesity. Conclusions: Our study demonstrates a link between adipocyte lipid accumulation and mCa2+ levels, suggesting that adipose-specific Mcu deficiency alleviates HFD-induced obesity and ameliorates metabolic disorders such as insulin resistance and hepatic steatosis. These effects may be achieved by increasing mitochondrial biosynthesis, promoting white fat browning and enhancing energy metabolism
    corecore