1,242 research outputs found

    Auditory Discrimination Learning:Role of Working Memory

    Get PDF
    Perceptual training is generally assumed to improve perception by modifying the encoding or decoding of sensory information. However, this assumption is incompatible with recent demonstrations that transfer of learning can be enhanced by across-trial variation of training stimuli or task. Here we present three lines of evidence from healthy adults in support of the idea that the enhanced transfer of auditory discrimination learning is mediated by working memory (WM). First, the ability to discriminate small differences in tone frequency or duration was correlated with WM measured with a tone n-back task. Second, training frequency discrimination around a variable frequency transferred to and from WM learning, but training around a fixed frequency did not. The transfer of learning in both directions was correlated with a reduction of the influence of stimulus variation in the discrimination task, linking WM and its improvement to across-trial stimulus interaction in auditory discrimination. Third, while WM training transferred broadly to other WM and auditory discrimination tasks, variable-frequency training on duration discrimination did not improve WM, indicating that stimulus variation challenges and trains WM only if the task demands stimulus updating in the varied dimension. The results provide empirical evidence as well as a theoretic framework for interactions between cognitive and sensory plasticity during perceptual experience

    An Information Perception-Based Emotion Contagion Model for Fire Evacuation

    Get PDF
    In fires, people are easier to lose their mind. Panic will lead to irrational behavior and irreparable tragedy. It has great practical significance to make contingency plans for crowd evacuation in fires. However, existing studies about crowd simulation always paid much attention on the crowd density, but little attention on emotional contagion that may cause a panic. Based on settings about information space and information sharing, this paper proposes an emotional contagion model for crowd in panic situations. With the proposed model, a behavior mechanism is constructed for agents in the crowd and a prototype of system is developed for crowd simulation. Experiments are carried out to verify the proposed model. The results showed that the spread of panic not only related to the crowd density and the individual comfort level, but also related to people’s prior knowledge of fire evacuation. The model provides a new way for safety education and evacuation management. It is possible to avoid and reduce unsafe factors in the crowd with the lowest cost

    Valley-polarized Josephson Junctions as gate-tunable 00-π\pi qubit platforms

    Full text link
    Recently, gate-defined Josephson junctions based on magic-angle twisted bilayer graphene (MATBG) have been fabricated. In such a junction, local electrostatic gating can create two superconducting regions connected by an interaction-driven valley-polarized state as the weak link. Due to the spontaneous time-reversal and inversion symmetry breaking of the valley-polarized state, novel phenomena such as the Josephson diode effect have been observed without applying external fields. Importantly, when the so-called nonreciprocity efficiency (which measures the sign and strength of the Josephson effect) changes sign, the energy-phase relation of the junction is approximate F(ϕ)cos(2ϕ)F(\phi) \approx \cos(2\phi) where FF is the free energy and ϕ\phi is the phase difference of the two superconductors. In this work, we show that such a MATBG-based Josephson junction, when shunted by a capacitor, can be used to realize the long-sought-after 00-π\pi qubits which are protected from local perturbation-induced decoherence. Interestingly, by changing the junction parameters, transmon-like qubits with large anharmonicity can also be realized. In short, by utilizing the novel interaction-driven valley-polarized state in MATBG, a single gate-defined Josephson junction can be used to replace complicated superconducting circuits for realizing qubits that are protected from local perturbations

    Digital control of multistep hydrothermal synthesis by using 3D printed reactionware for the synthesis of metal–organic frameworks

    Get PDF
    Hydrothermal‐synthesis‐based reactions are normally single step owing to the difficulty of manipulating reaction mixtures at high temperatures and pressures. Herein we demonstrate a simple, cheap, and modular approach to the design reactors consisting of partitioned chambers, to achieve multi‐step synthesis under hydrothermal conditions, in digitally defined reactionware produced by 3D printing. This approach increases the number of steps that can be performed sequentially and allows an increase in the options available for the control of hydrothermal reactions. The synthetic outcomes of the multi‐stage reactions can be explored by varying reaction compositions, number of reagents, reaction steps, and reaction times, and these can be tagged to the digital blueprint. To demonstrate the potential of this approach a series of polyoxometalate (POM)‐containing metal–organic frameworks (MOFs) unavailable by “one‐pot” methods were prepared as well as a set of new MOFs

    Ocular surface heat effects on ocular hemodynamics detected by real-time measuring device

    Get PDF
    AIM: To investigate the ocular hemodynamic effects of applying a hot compress to the eye. METHODS: The right eyes of five New Zealand white rabbits, both male and female, were hot-compressed for 18min. An independently designed novel ocular contact-type temperature measuring device was used to measure the ocular surface temperature before and after the heating. Relevant retrobulbar hemodynamic parameters such as peak systolic velocity (PSV), end diastolic velocity (EDV), and resistance index (RI) of each of the central retinal artery (CRA), long posterior ciliary artery (LPCA), and ophthalmic artery (OA), as well as the mean velocity (Vm) of the central retinal vein (CRV), were measured using a color Doppler flow imaging (CDFI) technique and expressed as mean values with standard deviation (mean±SD). A statistical analysis was conducted based on a paired t-test and the Wilcoxon signed-rank test. RESULTS: The employed real-time temperature measuring device was able to accurately measure ocular surface temperature during the hot-compress process. The temperature increased after the hot compress was applied. Analysis showed that the PSV and EDV values of the CRA and LPCA significantly increased after the application of the hot compress, as did the Vm of the CRV. There were no significant changes in the EDV of the OA nor the RI of each artery. CONCLUSION: This experiment, which is the first of its kind, confirms that the retrobulbar blood flow velocities can increase upon heating the ocular surface. This simple method may be useful in the future

    Effects of the Timing of Note Taking on Repeated Listening among Advanced Chinese Japanese Learners: Focusing on the Timing of Note Taking and Working Memory Span

    Get PDF
    This study aimed to investigate the effects of the timing of note taking on repeated listening for advanced Chinese learners of Japanese. The two independent variables were participants’ working memory capacity and the timing of the note taking. The main results were as follows: In the free recall test, there was a marginal significance that participants with a low working-memory capacity demonstrated better performance when taking notes during the first trail than participants with a high working-memory capacity. However in the fill-in-blank test, regardless of the timing of the note taking, a difference according to the size of working memory capacity was not found. Further, it was found that taking notes during the first trail left a stronger memory trace, whereas taking notes during the second trail was helpful for the understanding of target passages. These results suggest that learners with a smaller memory span can perform better with note taking and learners with a larger memory span are better of taking notes after the first trail

    环境因子和生物因子对黄河三角洲滨海湿地土壤呼吸的影响

    Get PDF
    Using the Li-8150 multichannel automatic soil CO2efflux system, soil respiration was measured continuously over a one-year period in a coastal wetland in the Yellow River Delta, China. Environmental and biological factors were measured simultaneously, including temperature, soil water content, aboveground biomass and leaf area index. The results showed that the diurnal variation of soil respiration presented a single-peak curve, but it appeared as multiple peaks when disturbed by soil freezing and surface flooding. Soil respiration showed obvious seasonal dynamics and a single peak curve. The average annual soil respiration was 0.85 &mu;mol CO2&middot;m-2&middot;s-1, and the mean soil respiration rate was 1.22 &mu;mol CO2&middot;m-2&middot;s-1during the growing season. On one-year scale, soil temperature was a major factor influencing soil respiration in the coastal wetland, which explained 87.5% of the variation in soil respiration. On the growing season scale, soil water content and leaf area index accounted for 85% of the seasonal variation of soil respiration.</p

    Phyllanthus Niruri L. Exerts Protective Effects Against the Calcium Oxalate-Induced Renal Injury via Ellgic Acid

    Get PDF
    Background: Urolithiasis or kidney stones is a common and frequently occurring renal disease; calcium oxalate (CaOx) crystals are responsible for 80% of urolithiasis cases. Phyllanthus niruri L. (PN) has been used to treat urolithiasis. This study aimed to determine the potential protective effects and molecular mechanism of PN on calcium oxalate-induced renal injury.Methods: Microarray data sets were generated from the calcium oxalate-induced renal injury model of HK-2 cells and potential disease-related targets were identified. Network pharmacology was employed to identify drug-related targets of PN and construct the active ingredient-target network. Finally, the putative therapeutic targets and active ingredients of PN were verified in vitro and in vivo.Results: A total of 20 active ingredients in PN, 2,428 drug-related targets, and 127 disease-related targets were identified. According to network pharmacology analysis, HMGCS1, SQLE, and SCD were identified as predicted therapeutic target and ellagic acid (EA) was identified as the active ingredient by molecular docking analysis. The increased expression of SQLE, SCD, and HMGCS1 due to calcium oxalate-induced renal injury in HK-2 cells was found to be significantly inhibited by EA. Immunohistochemical in mice also showed that the levels of SQLE, SCD, and HMGCS1 were remarkably restored after EA treatment.Conclusion: EA is the active ingredient in PN responsible for its protective effects against CaOx-induced renal injury. SQLE, SCD, and HMGCS1 are putative therapeutic targets of EA
    corecore