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Experimental Study on the Heat Transfer Characteristics of 1 
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Collector System 3 

Yu-Ting Wu1, Shan-Wei Liu1, Ya-Xuan Xiong2, Chong-Fang Ma1, Yu-Long Ding3 4 
1 Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Ministry of Education and Key 5 

Laboratory of Heat Transfer and Energy Conversion, Beijing municipality, Beijing University of Technology, 6 

Beijing 100124, China. 7 

2 Key lab of HVAC, Beijing University of Civil Engineering and Architecture，100044, China. 8 

3School of Chemical Engineering/Birmingham Centre of Cryogenic Energy Storage, University of 9 

Birmingham, B152TT United Kingdom. 10 

Abstract： 11 

An experimental system of parabolic trough solar collector and heat transfer was set up with a new 12 

molten salt employed as the heat transfer medium (with a melting point of 86℃ and a working 13 

temperature upper limit of 550℃). The circulation of molten salts in the system took place over 1,000 14 

hrs. Experiments were conducted to obtain the heat loss of the Heat Collector Element (HCE), the total 15 

heat transfer coefficient of the water-to-salt heat exchanger, and the convective heat transfer 16 

coefficients for the low melting point molten salt in a circular tube. The results show that the thermal 17 

loss of the tested HCE is higher than that of the PTR70, and the thermal loss at the joints of the 18 

collector tube represents about 5% of the total loss in the entire tube. The total heat transfer coefficient 19 

of the water-to-salt heat exchanger was between 600 and 1200 W/(m2·k) in the ranges of 20 

10,000<Re<21,000 and 9.5<Pr<12.2. The experimental data show good agreement with existing 21 

well-known correlations presented by the Sieder-Tate equation and the Gnielinski equation. This 22 

experimental study on heat loss from molten salt flow in a receiver tube will hopefully serve as a 23 

helpful reference for applications in parabolic trough systems. 24 

                                                                                      25 
1Corresponding author. Tel.: +86-10-67391985-8323; Fax: +86-10-67392774 26 
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coefficient  29 

1. Introduction 30 

Nowadays, concentrated solar power (CSP) presents tremendous potential for the large-scale 31 

deployment of clean renewable energy [1], and it has been proven to be the most mature solar thermal 32 

technology available. As a result, most construction projects for commercial solar thermal power plants 33 

are currently based on this type of collector [2-4]. Many different kinds of working fluids are used in 34 

CSP systems [5-7], and selecting the appropriate heat transfer fluid and storage medium is a key 35 

technological issue for the future success of CSP technology. Molten salt represents an extremely 36 

promising medium for heat transfer and storage in CSP plants; its advantages include a wide working 37 

temperature range, low vapor pressure, large heat capacity, low viscosity, good chemical stability, and 38 

low cost [8-11]. Molten salt CSP storage was shown to be commercially viable in 2008, when the 39 

50MWe Andasol-1 plant with 7.5 hours of molten salt storage began its operation [12]. However, the 40 

only CSP system that uses molten salt as the medium of heat transfer is the Archimede parabolic trough 41 

plant in Italy. In the Archimede system, the working fluid of the heat transfer and heat storage is solar 42 

salt that is a mixture of NaNO3 and KNO3 [13] with a high melting point(220℃). In such systems, the 43 

cost of operation will rise dramatically if there is an unexpected drop in temperature in the operating 44 

process in which the salt is used as the heat transfer fluid. Therefore, additional hard-ware must be 45 

installed, such as heat tracing, insulation, or emergency water-dilution systems. The high melting point 46 

is a major disadvantage of conventional molten salts and limits their application in trough CSP systems 47 

[3]. 48 

Based on different mixing ratios of KNO3–NaNO3–LiNO3–Ca (NO3)2.4H2O, a new kind of 49 
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nitrate salt was developed by our research group. Experimental results have shown that the melting 50 

point of this molten salt can be as low as 86℃ with a decomposition temperature above 600℃ [14]. 51 

Previous experiments have been carried out to obtain the convective heat transfer coefficients of the 52 

turbulent flow and transition flows of Hitec salts, LiNO3, and fluoride salts in a circular tube [15-20]. 53 

However, heat transfer performance using a low melting point salt has not been reported in the 54 

literature. 55 

A parabolic trough solar collector and heat transfer system was constructed at the end of 2011 with 56 

a low melting point molten salt [14]. Since then, numerous engineering issues have been addressed, 57 

such as the plugging of solidified molten salt, charging and discharging methods, equipment selection, 58 

and thermal and flow parameter measurements. A series of experiments on low melting point molten 59 

salt were conducted in the trough solar collector and heat transfer system, and the results of the 60 

experiments are reported in this paper. The heat loss of the HCE and the convective heat transfer 61 

coefficients of turbulent flows were obtained in a circular tube, and the total heat transfer coefficient of 62 

the water-to-salt heat exchanger was obtained as well. 63 

2. Description of experimental system and working fluids 64 

2.1 Experimental apparatus 65 

A schematic diagram of the experimental system is shown in Fig. 1. The system contains molten 66 

salt circulation and water circulation. The main parts of the two cycles include a molten salt tank, a 67 

high-temperature molten salt pump, a molten salt heater, a concentrating collector, a water-to-salt heat 68 

exchanger, a water cooler, a water heater, a mass flow meter, and a water pump. The characteristics of 69 

the collector are presented in Table 1. 70 

In order to avoid molten salt solidification in the tube, an automatic electric tracing band is utilized 71 
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in the pipe system, the latter of which requires a certain lean of about 5‰. Due to the inherent 72 

properties of molten salts and the high temperature, most devices cannot effectively measure the 73 

molten salt flow. In order to measure the molten salt flow rates, many different types of flow meters 74 

were tested, such as target flow meters, mass flow meters, float flow meters, etc. Through comparative 75 

analysis, an ultrasonic flowmeter made by FLEXIM (Germany) was chosen to measure the flow rates 76 

of the molten salt, and a mass flow meter was installed in the water cycle. Meanwhile, the temperature 77 

of the molten salt was measured by a type K thermocouple with special limits of error(±1.1℃ or 78 

±0.4% of the tested temperature, whichever is greater), and the temperature in the water cycle was 79 

measured with a PT100 resistance thermometer with an accuracy of 0.2℃. To obtain different flow 80 

rates of the molten salt, a frequency converter was installed to control the molten salt pump. Before the 81 

molten salt was pumped from the storage tank to the pipeline, the entire molten salt flow loop had to 82 

warm up. When the molten salt in the storage tank was heated to a prescribed temperature by an 83 

electric heater, the molten salt pump started to circulate the molten salt in the salt cycle. 84 

2.2 Working fluids 85 

A new kind of low melting point molten salt prepared by our lab [14] with a melting point of 86℃86 

and a working temperature upper limit of 550℃ was chosen as the working fluid in this experimental 87 

investigation. Its main thermophysical properties are listed in Table 2.   88 

3. Results and discussion  89 

3.1 Thermal loss of the HCE  90 

In this parabolic trough solar system, the tested HCE features six evacuated collector tubes (each 91 

with a length of 2 m) welded together. Insulation with a length of 1.15m and a thickness of 40mm was 92 

adopted for proper heat preservation at the joints, including the bellows and the welding. The thermal 93 
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loss of molten salt through the HCE can be calculated by the following equation: 94 

                        0( )loss p iq mc t t= −&                                   (1) 95 

where the thermal characteristic of the terminal through convection can be calculated as 96 

                           ( )c wq hA t t∞= −                                   (2) 97 

and  98 

                            h N u
d

λ=                                       (3) 99 

When wind speed V≤0.1m/s, Nu can be expressed as follows [21]: 100 

                     

2
1/6

8/279/16

0.387
0.6

1 (0.559 / Pr)

Ra
Nu

 
 = + 

 +   

                      (4) 101 

Once V＞0.1m/s, Nu is given as follows [21]: 102 

                           Re Prm nNu C=                                   (5) 103 

where Pr≤10，n=0.37；Pr＞0.36，n=0.36. The values of C and m are listed in Table 3. 104 

The thermal loss of the joints through radiation can be obtained as 105 

                          4 4( )rad wQ A t tσε ∞= −                               (6) 106 

In order to eliminate the influence of sunlight, the experiments were carried out at night, and the 107 

maximum wind speed was less than 3 m/s. Fig. 2 shows the measured thermal heat loss through the 108 

HCE at different average fluid temperatures above the ambient air temperature. The results show that 109 

the thermal loss at the joints represents about 5% of the total thermal loss in the entire collector tube. 110 

However, it would reach 18% or so without any thermal insulation [22]. 111 

A comparison was also made between the present results and the data for a PTR70 receiver 112 

obtained in the same way but using oil as working fluid [23]. As shown in Fig. 3, the heat loss of the 113 

tested HCE is higher than that of the PTR70. One reason may be that the tested HCE had been 114 

operating at a high temperature (300℃~500℃) for two years, which may have damaged its coating to 115 
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some degree. 116 

3.2 Turbulent convective heat transfer with molten salt in a circular pipe 117 

A type of double-pipe heat-exchanger was used in the experimental system, in which the 118 

high-temperature molten salt flowing inside the inner tube was cooled by low-temperature water 119 

flowing in the outer tube, as shown in Fig. 4. The diameter and thickness of the outer tube are 57mm 120 

and 3.5mm, respectively, while those of the inner tube are 32mm and 2mm, respectively; both tubes are 121 

1,200mm long. The outer tube’s surface was wrapped with insulation materials to minimize heat loss. 122 

By measuring the temperature at four points (i.e., water inlet, water outlet, molten salt inlet, and molten 123 

salt outlet) and calculating the heat loss of the tube, we were able to obtain the overall heat transfer 124 

coefficient from molten salt to water in the tested section. 125 

The data processing method adopted in this experiment can be found in our previous work [15] on 126 

turbulent convective heat transfer coefficients of lithium nitrate in a circular tube. Using the same 127 

least-square methods, the overall heat transfer coefficients and the correlations were calculated for the 128 

convective heat transfer coefficients of low melting molten salts. Through analysis and derivation, we 129 

obtained the Nusselt number as follows:   130 

                        Nu=0.0239Re0.804Pr0.33                           (7) 131 

Fig.5 shows that the total heat transfer coefficients increase within the a range of 600 to 1200 132 

W/(m2·k1) as the molten salt temperature increases within a range of 14,000<Re<32,000. Fig. 6 133 

illustrates the good agreement between the curve predicted by Eq. (7) and the experimental data, with a 134 

deviation of only ±7%; Eq. (7) is based on experimental data with Prandtl numbers ranging from 9.5 to 135 

12.2. In order to verify the applicability of well-known convective heat transfer correlations in molten 136 

salts, five kinds of molten salts were identified from the literature [15-20] in ranges of 1.6<Pr<15.3 and 137 
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10,000<Nu<46,130. Figs. 7-9 show the comparisons between the present experimental results and the 138 

existing data for various equations.   139 

From these figures, it can be seen that there is a relatively high deviation between experimental 140 

data from Kirst et al. [17] and the Dittus-Boelter equation, the Sieder-Tate equation [24], and the 141 

Gnielinski equation [25]. However, significant portions of the experimental data are quite consistent 142 

with the existing correlations. The maximum deviation between the present experimental results and 143 

the curves predicted by the Dittus-Boelter equation, Sieder-Tate equation [24], and Gnielinski equation 144 

[25] reach +23%, -10%, and -20% respectively. It is worth noting that the Sieder-Tate equation and the 145 

Gnielinski equation include property ratio correction terms and consider the effect of variable fluid 146 

properties, while the effect of thermo-physical property variation is not included in the Dittus-Boelter 147 

equation. In comparison, the present experimental results involve significant variation in the properties 148 

of molten salt. For example, when the temperature of the side wall of the molten salt is 175℃, its bulk 149 

temperature is 286℃, and the corresponding dynamic viscosity values are 4.83mPa·s and 3.34mPa·s 150 

respectively. This will yield distorted velocity and temperature fields, resulting in considerable changes 151 

in heat transfer performance compared to the case of constant properties. The good agreement between 152 

the present data and well-known turbulent convection correlations, including the Sieder-Tate equation 153 

and the Gnielinski equation, demonstrates the superior reliability of low melting point molten salts. 154 

To highlight the influence of the Prandtl number, the present results and previous convective heat 155 

transfer data for various working fluids from the literature [15-20, 26] are compared in Fig. 10. Two 156 

curves predicted by the Dittus-Boelter equation, which represent fluid heating (Pr0.4) and fluid cooling 157 

(Pr0.3), are also presented in Fig. 10. It can be seen that most of the experimental data are congruent 158 

with the two curves, except for the data from Kirst et al. [17] and that of NaOH [26]. Clearly, the 159 
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present experimental results are largely consistent with the experimental data collected from the 160 

literature [15-20, 26]. These comparisons demonstrate that the Prandtl number dependence provided by 161 

existing correlations is also applicable to molten salt convection.  162 

Uncertainty analysis is necessary in order to validate the accuracy of the present experimental 163 

results. The uncertainties of the calculated results were evaluated using standard error analysis. In 164 

calculating the error in any measurement, both systematic and random errors must be accounted for. 165 

Systematic errors are related to instruments used in the measurements, and random errors concern data 166 

plots after the same measurements are repeated. In this experiment, the variables involved are 167 

temperature, flow rate, and wind speed. The random errors in this experiment are related to the 168 

scattering of data during the period of stable temperatures and flow rates. The random error for the 169 

calculated values of heat loss, specific heat, heat flux, heat transfer, and Nusselt number are calculated 170 

using the formula defined below: 171 

                 
1 2

1 2

22 2

n

n

f f f

x x x
x x xy δ δ δδ     ∂ ∂ ∂= + + +     ∂ ∂ ∂     

L
                     (8) 172 

Specifically, the desired result is a well-behaved function 1, 2,( , )nf x x xL  of the direct physical 173 

variables (x1, x2, ...., xn) that have uncertainties (δx1, δx2, …, δxn). Then the equation can be written as 174 

                                1, 2,( , )ny f x x x= L                                  (9) 175 

The errors of the calculated heat loss are presented in Table 4. It can be seen that the maximum and 176 

minimum error are ±3.18% and ±2.65%, respectively (in the first two experiments mentioned in this 177 

paper, the same temperature sensor and flow sensor were used). The errors of the measured and 178 

calculated parameters of the turbulent convective heat transfer are presented in Table 5. The errors of 179 

the calculated parameters are estimated to be ±9.6% for the total heat transfer coefficient, ±7.0% for the 180 

Nusselt number of molten salt, and ±9.3% for the heat flux between the water and molten salt. 181 
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4. Conclusions 182 

(1) An experimental system consisting of a parabolic trough solar collector and heat transfer was set up 183 

with a new molten salt employed as the heat transfer medium (with a melting point of 86℃ and a 184 

working temperature upper limit of 550℃); The circulation of molten salts in the system took place 185 

over 1,000 hrs. The results indicated that operation, starting, and stopping the system using low melting 186 

point salts resulted in a lower risk of freezing and plugging compared with utilizing high melting point 187 

salts(e.g., solar salts).   188 

(2) Experiments were conducted to obtain the thermal loss of the HCE as the temperature of the molten 189 

salt changed. The results were compared with the data for a PTR70 obtained in the same way but using 190 

oil as the working fluid. The results showed that the thermal loss of the tested tube was higher than that 191 

of the PTR70. Moreover, the thermal loss at the joints was about 5% of the total loss in the entire test 192 

collector tube, but if there was no thermal insulation, this proportion would reach about 18%. 193 

(3) The total heat transfer coefficient of the water-to-salt heat exchanger was obtained for different 194 

temperatures and flow rates. The results showed that the total heat transfer coefficient of the 195 

water-to-salt heat exchanger ranged between 600 and 1200 W/(m2·k) for 10,000<Re<21,000 and 196 

9.5<Pr<12.2.   197 

(4) The convective heat transfer coefficients and correlations for low melting point salts were 198 

calculated for 10,000<Re<21,000 and 9.5<Pr<12.2. Comparisons were made between the present 199 

experimental results and well-known empirical correlations. The present experimental data of 200 

convective heat transfer coefficients with low melting point molten salts demonstrated good agreement 201 

with the Sieder-Tate equation and the Gnielinski equation. 202 

 (5) The application of low melting point molten salts to CSP systems can help minimize operation 203 
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costs and required investment levels, and many practical engineering problems can be addressed easily. 204 

The experimental results will hopefully provide a helpful reference for the development of 205 

high-temperature molten salt CSP systems. 206 
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Nomenclature 271 

�, m   mass flow rate, (kg/s) 272 

A      heat transfer area, (m2) 273 

Cp     specific heat, (kg/(kg·K)) 274 

t       temperature, (K) 275 

h      heat transfer coefficient, (W/(m2·K)) 276 

Nu     Nusselt number (hl/k) 277 

Pr     Prandtl number (ν/a) 278 

Ra     Rayleigh number 279 

d      diameter, (m) 280 

L      length, (m) 281 

Greek symbols 282 

λ            thermal conductivity, (W/(m·K)) 283 

σ      radiation constant, (W/(m2·K4)) 284 

ε      emissivity  285 

Subscripts 286 

i      inlet parameters, inner side parameters 287 

o      outlet parameters, outer parameters 288 

s      parameters of molten salt 289 

w      parameters of water, parameters of tube wall 290 

∞     parameters of surroundings 291 
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Figure captions: 
Fig. 1. Parabolic trough solar collector and heat transfer system with molten salt 

Fig. 2. Thermal loss of the HCE and terminal 

Fig. 3. Comparison between experimental results and the PTR70 

Fig. 4. Schematic of the double-pipe heat exchanger 

Fig. 5. Total heat transfer coefficient of the exchanger as the salt Re changes 

Fig. 6. Fitting curve of the molten salt Nu and relative errors 

Fig. 7. Comparison of present experimental results, existing data, and the Dittus-Boelter equation 

Fig. 8. Comparison of present experimental results, existing data, and the Sieder-Tate equation 

Fig. 9. Comparison of present experimental results, existing data, and the Gnielinski equation 

Fig. 10. Prandtl number dependence of the Nusselt number of turbulent flow in a circular tube 
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Fig. 1. Parabolic trough solar collector and heat transfer system with molten salt 
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Fig. 2. Thermal loss of the HCE and terminal 
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Fig. 3. Comparison between experimental results and the PTR70 
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Fig. 4. Schematic of the double-pipe heat exchanger 
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Fig. 5. Total heat transfer coefficient of the exchanger as the salt Re changes 
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Fig. 6. Fitting curve of the molten salt Nu and relative errors 
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Fig. 7. Comparison of present experimental results, existing data, and the Dittus-Boelter equation 
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Fig. 8. Comparison of present experimental results, existing data, and the Sieder-Tate equation 
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Fig. 9. Comparison of present experimental results, existing data, and the Gnielinski equation 
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Fig. 10. Prandtl number dependence of the Nusselt number of turbulent flow in a circular tube 
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Highlights 

 
� A low melting point molten salt was applied in CSP systems. 
 
� Experiment indicates a low risk of freezing and plugging. 
 
� The results show the proportion of the thermal loss at the joints. 

 
� Total heat transfer coefficient of the water-to-salt heat exchanger was obtained. 


