2,286 research outputs found

    Increasing Pilots Understanding of Future Automation State an Evaluation of an Automation State and Trajectory Prediction System

    Get PDF
    A pilot in the loop flight simulation study was conducted at NASA Langley Research Center to evaluate a trajectory prediction system. The trajectory prediction system computes a five-minute prediction of the lateral and vertical path of the aircraft given the current and intent state of the automation. The prediction is shown as a graphical representation so the pilots can form an accurate mental model of the future state. Otherwise, many automation changes and triggers are hidden from the flight crew or need to be consolidated to understand if a change will occur and the exact timing of the change. Varying dynamic conditions like deceleration can obscure the future trajectory and the ability to meet constraints, especially in the vertical dimension. Current flight deck indications of flight path assume constant conditions and do not adequately support the flight crew to make correct judgments regarding constraints. The study was conducted using ten commercial airline crews from multiple airlines, paired by airline to minimize procedural effects. Scenarios spanned a range of conditions that provided evaluation in a realistic environment with complex traffic and weather conditions. In particular, scenarios probed automation state and loss of state awareness. The technology was evaluated and contrasted with current state-of-the-art flight deck capabilities modeled from the Boeing 787. Objective and subjective data were collected from aircraft parameters, questionnaires, audio/video recordings, head/eye tracking data, and observations. This paper details findings about the trajectory prediction system including recommendations about further study

    Using empirical data to build an advisory tool for eco-design

    Get PDF

    Information Management to Mitigate Loss of Control Airline Accidents

    Get PDF
    Loss of control inflight continues to be the leading contributor to airline accidents worldwide and unreliable airspeed has been a contributing factor in many of these accidents. Airlines and the FAA developed training programs for pilot recognition of these airspeed events and many checklists have been designed to help pilots troubleshoot. In addition, new aircraft designs incorporate features to detect and respond in such situations. NASA has been using unreliable airspeed events while conducting research recommended by the Commercial Aviation Safety Team. Even after significant industry focus on unreliable airspeed, research and other evidence shows that highly skilled and trained pilots can still be confused by the condition and there is a lack of understanding of what the associated checklist(s) attempts to uncover. Common mode failures of analog sensors designed for measuring airspeed continue to confound both humans and automation when determining which indicators are correct. This paper describes failures that have occurred in the past and where/how pilots may still struggle in determining reliable airspeed when confronted with conflicting information. Two latest generation aircraft architectures will be discussed and contrasted. This information will be used to describe why more sensors used in classic control theory will not solve the problem. Technology concepts are suggested for utilizing existing synoptic pages and a new synoptic page called System Interactive Synoptic (SIS). SIS details the flow of flight critical data through the avionics system and how it is used by the automation. This new synoptic page as well as existing synoptics can be designed to be used in concert with a simplified electronic checklist (sECL) to significantly reduce the time to configure the flight deck avionics in the event of a system or sensor failure

    Diagnosis of Elder Abuse in U.S. Emergency Departments

    Get PDF
    To estimate the proportion of visits to United States emergency departments (EDs) receiving a diagnosis of elder abuse using two nationally representative datasets

    Semi-Permanent Vacuum Closure with Multiple Retubulation Capability

    Get PDF
    A vacuum system (20) includes an enclosure (22) having a vacuum-tight wall (26) and an internally threaded aperture (66) through the wall (26). A tip-off fitting (24) has a base (50) with a bore (52) therethrough, a hollow tube (62) fixed to the base (50) with a vacuum-tight seal, such that an interior (64) of the tube (62) is in communication with the bore (52) in the base (50), and an external thread (58) on the exterior of the base (50). The external thread (58) on the exterior of the base (50) is dimensioned to threadably engage the internal thread (68) on the aperture (66). There is a disengageable vacuum sealant (70) such as a layer of indium metal between the external thread (58) of the base (50) and the internal thread (68) of the aperture (66). The vacuum system (20) is evacuated through the tip-off fitting (24) and sealed by closing off the hollow tube (62). At a later time, the vacuum system can be brought to atmospheric pressure and then reseated by replacing the tip-off fitting with another tip-off fitting and repeating the evacuation and sealing

    Evaluation of Technology Concepts for Energy, Automation, and System State Awareness in Commercial Airline Flight Decks

    Get PDF
    A pilot-in-the-loop flight simulation study was conducted at NASA Langley Research Center to evaluate flight deck systems that (1) provide guidance for recovery from low energy states and stalls, (2) present the current state and expected future state of automated systems, and/or (3) show the state of flight-critical data systems in use by automated systems and primary flight instruments. The study was conducted using 13 commercial airline crews from multiple airlines, paired by airline to minimize procedural effects. Scenarios spanned a range of complex conditions and several emulated causal and contributing factors found in recent accidents involving loss of state awareness by pilots (e.g., energy state, automation state, and/or system state). Three new technology concepts were evaluated while used in concert with current state-of-the-art flight deck systems and indicators. The technologies include a stall recovery guidance algorithm and display concept, an enhanced airspeed control indicator that shows when automation is no longer actively controlling airspeed, and enhanced synoptic pages designed to work with simplified interactive electronic checklists. An additional synoptic was developed to provide the flight crew with information about the effects of loss of flight critical data. Data was collected via questionnaires administered at the completion of flight scenarios, audio/video recordings, flight data, head and eye tracking data, pilot control inputs, and researcher observations. This paper presents findings derived from the questionnaire responses and subjective data measures including workload, situation awareness, usability, and acceptability as well as analyses of two low-energy flight events that resulted in near-stall conditions

    Usability Evaluation of Indicators of Energy-Related Problems in Commercial Airline Flight Decks

    Get PDF
    A series of pilot-in-the-loop flight simulation studies were conducted at NASA Langley Research Center to evaluate indicators aimed at supporting the flight crews awareness of problems related to energy states. Indicators were evaluated utilizing state-of-the-art flight deck systems such as on commercial air transport aircraft. This paper presents results for four technologies: (1) conventional primary flight display speed cues, (2) an enhanced airspeed control indicator, (3) a synthetic vision baseline that provides a flight path vector, speed error, and an acceleration cue, and (4) an aural airspeed alert that triggers when current airspeed deviates beyond a specified threshold from the selected airspeed. Full-mission high-fidelity flight simulation studies were conducted using commercial airline crews. Crews were paired by airline for common crew resource management procedures and protocols. Scenarios spanned a range of complex conditions while emulating several causal factors reported in recent accidents involving loss of energy state awareness by pilots. Data collection included questionnaires administered at the completion of flight scenarios, aircraft state data, audio/video recordings of flight crew, eye tracking, pilot control inputs, and researcher observations. Questionnaire response data included subjective measures of workload, situation awareness, complexity, usability, and acceptability. This paper reports relevant findings derived from subjective measures as well as quantitative measures

    Regarding Pilot Usage of Display Technologies for Improving Awareness of Aircraft System States

    Get PDF
    ed systems and the procedures for ng in complexity. This interacting trend places a larger burden on pilots to manage increasing amounts of information and to understand system interactions. The result is an increase in the likelihood of loss of airplane state awareness (ASA). One way to gain more insight into this issue is through experimentation using objective measures of visual behavior. This study summarizes an analysis of oculometer data obtained during a high-fidelity flight simulation study that included a variety of complex pilot-system interactions that occur in current flight decks, as well as several planned for the next generation air transportation system. The study was comprised of various scenarios designed to induce low and high energy aircraft states coupled with other emulated causal factors in recent accidents. Three different display technologies were evaluated in this recent pilot-in-the-loop study conducted at NASA Langley Research Center. These technologies include a stall recovery guidance algorithm and display concept, an enhanced airspeed control indication of when the automation is no longer actively controlling airspeed, and enhanced synoptic diagrams with corresponding simplified electronic interactive checklists. Multiple data analyses were performed to understand how the 26 participating airline pilots were observing ASA-related information provided during different stag specific events within these stages

    Antiplasmodial activity, in vivo pharmacokinetics and anti-malarial efficacy evaluation of hydroxypyridinone hybrids in a mouse model

    Get PDF
    BackgroundDuring the erythrocytic stage in humans, malaria parasites digest haemoglobin of the host cell, and the toxic haem moiety crystallizes into haemozoin. Chloroquine acts by forming toxic complexes with haem molecules and interfering with their crystallization. In chloroquine-resistant strains, the drug is excluded from the site of action, which causes the parasites to accumulate less chloroquine in their acid food vacuoles than chloroquine-sensitive parasites. 3-Hydroxylpyridin-4-ones are known to chelate iron; hydroxypyridone-chloroquine (HPO-CQ) hybrids were synthesized in order to determine whether they can inhibit parasites proliferation in the parasitic digestive vacuole by withholding iron from plasmodial parasite metabolic pathway.MethodsTwo HPO-CQ hybrids were tested against Plasmodium falciparum chloroquine-sensitive (D10 and 3D7) and -resistant strains (Dd2 and K1). The pharmacokinetic properties of active compounds were determined using a mouse model and blood samples were collected at different time intervals and analysed using LC–MS/MS. For in vivo efficacy the mice were infected with Plasmodium berghei in a 4-day Peters’ test. The parasitaemia was determined from day 3 and the course of the infection was followed by microscopic examination of stained blood films every 2–3days until a rise in parasitaemia was observed in all test subjects.ResultsIC50 values of the two compounds for sensitive and resistant strains were 0.064 and 0.047µM (compound 1), 0.041 and 0.122µM (compound 2) and 0.505 and 0.463µM (compound 1), 0.089 and 0.076µM (compound 2), respectively. Pharmacokinetic evaluation of these compounds showed low oral bioavailability and this affected in vivo efficacy when compounds were dosed orally. However, when dosed intravenously compound 1 showed a clearance rate of 28ml/min/kg, an apparent volume of distribution of 20l/kg and a half-life of 4.3h. A reduction in parasitaemia was observed when compound 1 was dosed intravenously for four consecutive days in P. berghei-infected mice. However, a rise in parasitaemia levels was observed on day 6 and on day 9 for chloroquine-treated mice.ConclusionThe hybrid compounds that were tested were able to reduce parasitaemia levels in P. berghei-infected mice when dosed intravenously, but parasites recrudesced 24h after the administration of the least dose. Despite low oral bioavailability, the IV data obtained suggests that further structural modifications may lead to the identification of more HPO-CQ hybrids with improved pharmacokinetic properties and in vivo efficacy

    Shell Neurons of the Master Circadian Clock Coordinate the Phase of Tissue Clocks Throughout the Brain and Body

    Get PDF
    Background: Daily rhythms in mammals are programmed by a master clock in the suprachiasmatic nucleus (SCN). The SCN contains two main compartments (shell and core), but the role of each region in system-level coordination remains ill defined. Herein, we use a functional assay to investigate how downstream tissues interpret region-specific outputs by using in vivo exposure to long day photoperiods to temporally dissociate the SCN. We then analyze resulting changes in the rhythms of clocks located throughout the brain and body to examine whether they maintain phase synchrony with the SCN shell or core. Results: Nearly all of the 17 tissues examined in the brain and body maintain phase synchrony with the SCN shell, but not the SCN core, which indicates that downstream oscillators are set by cues controlled specifically by the SCN shell. Interestingly, we also found that SCN dissociation diminished the amplitude of rhythms in core clock gene and protein expression in brain tissues by 50–75 %, which suggests that light-driven changes in the functional organization of the SCN markedly influence the strength of rhythms in downstream tissues. Conclusions: Overall, our results reveal that body clocks receive time-of-day cues specifically from the SCN shell, which may be an adaptive design principle that serves to maintain system-level phase relationships in a changing environment. Further, we demonstrate that lighting conditions alter the amplitude of the molecular clock in downstream tissues, which uncovers a new form of plasticity that may contribute to seasonal changes in physiology and behavior
    • …
    corecore