13 research outputs found

    Coupling a stochastic occupancy model to EnergyPlus to predict hourly thermal demand of a neighbourhood

    Get PDF
    When designing and managing integrated renewable energy technologies at a community level, prediction of hourly thermal demand is essential. Dynamic thermal modelling, using deterministic occupancy profiles, has been widely used to predict the highresolution temporal thermal demand of individual buildings. Only in recent years has this approach started to be applied to simulate all buildings in a neighbourhood or an entire housing stock of a region. This study explores the potential of predicting hourly thermal demand for a group of dwellings by applying a stochastic occupancy model to dynamic thermal modelling. A case study with 125 new houses demonstrates the approach. The result was a more realistic and representative hourly thermal demand profile, compared to using standard deterministic occupancy profiles

    Opini Komunitas Warga Sekitar Tentang Maraknya Pedagang Kaki Lima (PKL) (Studi Deskriptif Analitis Tentang Opini Komunitas Warga Sekitar Pkl – Tamansari, Kepatihan, dan Dalem Kaum – Kota Bandung)

    Full text link
    Penelitian dengan judul “Opini komunitas warga sekitar tentang maraknya Pedagang Kaki Lima (PKL)” ini, dilakukan oleh pengajar/dosen tetap Fakultas Ilmu Komunikasi (FIK). Permasalahan penelitian adalah tentang bagaimana opini komunitas warga sekitar PKL mengenai keamanan, ketertiban, ketenangan, Kenyamanan, keindahan, kebersihan, dan keramah-tamahan (7“K”) akibat maraknya PKL. Sasaran strategis dalam penelitian ini adalah komunitas warga di sekitar lingkungan PKL Jalan Kepatihan, Dalem Kaum, dan Tamansari.Tujuan penelitian adalah untuk mengetahui, mengkaji, dan menganalisis faktor 7“K” yang dirasakan komunitas warga sekitar, akibat maraknya PKL, sehingga tanggapan yang diekspresikan mereka dapat menjadi masukan bagi Humas Pemerintah Kota Bandung dalam upaya mensosialisasikan kebijakan pemerintah tentang PKL khususnya dalam merumuskan konsep community relations berkaitan dengan 7 “K” yang dirasakan oleh komunitas warga sekitar terhadap maraknya PKL tersebut. Kesimpulan hasil penelitian ini adalah: pada umumnya opini komunitas warga sekitar terhadap maraknya PKL, dilihat dari faktor 7“K” sangatlah bervariasi di antara opini positif dan negatif, Dalam arti, untuk responden tertentu penilaiannya sangat relatif tergantung dari persepsi masing-masing dan atas dasar pengalaman masing-masing dengan para PKL tersebut. Dengan demikian tidak sepenuhnya berada pada kecenderungan tertentu yang bersifat negatif atau positif. Oleh karena itu dari opini tersebut selanjutnya dapat berkembang untuk diyakini tentang adanya kemungkinan di antara kedua belah pihak saling membina hubungan, dan pemerintah memfasilitasi hubungan tersebut dalam kebijakan-kebijakannya

    pH-Controlled Dealloying Route to Hierarchical Bulk Nanoporous Zn Derived from Metastable Alloy for Hydrogen Generation by Hydrolysis of Zn in Neutral Water

    No full text
    Dealloyed nanoporous metals made of very-reactive elements have rarely been reported. Instead, reactive materials are used as sacrificial components in dealloying. The high chemical reactivity of nonprecious nanostructured metals makes them suitable for a broad range of applications such as splitting water into H<sub>2</sub> gas and metal hydroxide. On the other hand, the same high chemical reactivity hinders the synthesis of nanostructured metals. Here we use a pH-controlled dealloying strategy to fabricate bulk nanoporous Zn with bulk dimensions in the centimeter range via the selective removal of Al from metastable face-centered cubic bulk Zn<sub>20</sub>Al<sub>80</sub> at. % parent alloys. The corresponding bulk nanoporous Zn exhibits a hierarchical ligament/pore architecture characterized by primary ligaments and pores with an average feature size in the submicrometer range. These primary structures are made of ultrafine secondary ligaments and pores with a characteristic feature size in the range of 10–20 nm. Our bulk nanoporous Zn can split water into H<sub>2</sub> and Zn­(OH)<sub>2</sub> at ambient temperature and pressure and continuously produce H<sub>2</sub> at a constant rate of 0.08 mL/min per gram of Zn over 8 h. We anticipate that in this hierarchical bulk architecture, the macropores facilitate the flow of water in the bulk of the material, while the mesopores and ultrafine ligaments provide a high surface area for the reaction of water with Zn. The bulk nanoporous Zn/water system can be used for on-board or on-demand H<sub>2</sub> applications, during which H<sub>2</sub> is produced when needed, without prior storage of this gas compressed in cylinders as it is currently the case

    pH-Controlled Dealloying Route to Hierarchical Bulk Nanoporous Zn Derived from Metastable Alloy for Hydrogen Generation by Hydrolysis of Zn in Neutral Water

    No full text
    Dealloyed nanoporous metals made of very-reactive elements have rarely been reported. Instead, reactive materials are used as sacrificial components in dealloying. The high chemical reactivity of nonprecious nanostructured metals makes them suitable for a broad range of applications such as splitting water into H<sub>2</sub> gas and metal hydroxide. On the other hand, the same high chemical reactivity hinders the synthesis of nanostructured metals. Here we use a pH-controlled dealloying strategy to fabricate bulk nanoporous Zn with bulk dimensions in the centimeter range via the selective removal of Al from metastable face-centered cubic bulk Zn<sub>20</sub>Al<sub>80</sub> at. % parent alloys. The corresponding bulk nanoporous Zn exhibits a hierarchical ligament/pore architecture characterized by primary ligaments and pores with an average feature size in the submicrometer range. These primary structures are made of ultrafine secondary ligaments and pores with a characteristic feature size in the range of 10–20 nm. Our bulk nanoporous Zn can split water into H<sub>2</sub> and Zn­(OH)<sub>2</sub> at ambient temperature and pressure and continuously produce H<sub>2</sub> at a constant rate of 0.08 mL/min per gram of Zn over 8 h. We anticipate that in this hierarchical bulk architecture, the macropores facilitate the flow of water in the bulk of the material, while the mesopores and ultrafine ligaments provide a high surface area for the reaction of water with Zn. The bulk nanoporous Zn/water system can be used for on-board or on-demand H<sub>2</sub> applications, during which H<sub>2</sub> is produced when needed, without prior storage of this gas compressed in cylinders as it is currently the case

    pH-Controlled Dealloying Route to Hierarchical Bulk Nanoporous Zn Derived from Metastable Alloy for Hydrogen Generation by Hydrolysis of Zn in Neutral Water

    No full text
    Dealloyed nanoporous metals made of very-reactive elements have rarely been reported. Instead, reactive materials are used as sacrificial components in dealloying. The high chemical reactivity of nonprecious nanostructured metals makes them suitable for a broad range of applications such as splitting water into H<sub>2</sub> gas and metal hydroxide. On the other hand, the same high chemical reactivity hinders the synthesis of nanostructured metals. Here we use a pH-controlled dealloying strategy to fabricate bulk nanoporous Zn with bulk dimensions in the centimeter range via the selective removal of Al from metastable face-centered cubic bulk Zn<sub>20</sub>Al<sub>80</sub> at. % parent alloys. The corresponding bulk nanoporous Zn exhibits a hierarchical ligament/pore architecture characterized by primary ligaments and pores with an average feature size in the submicrometer range. These primary structures are made of ultrafine secondary ligaments and pores with a characteristic feature size in the range of 10–20 nm. Our bulk nanoporous Zn can split water into H<sub>2</sub> and Zn­(OH)<sub>2</sub> at ambient temperature and pressure and continuously produce H<sub>2</sub> at a constant rate of 0.08 mL/min per gram of Zn over 8 h. We anticipate that in this hierarchical bulk architecture, the macropores facilitate the flow of water in the bulk of the material, while the mesopores and ultrafine ligaments provide a high surface area for the reaction of water with Zn. The bulk nanoporous Zn/water system can be used for on-board or on-demand H<sub>2</sub> applications, during which H<sub>2</sub> is produced when needed, without prior storage of this gas compressed in cylinders as it is currently the case

    Additional file 4: Figure S4. of Rapid, precise quantification of bacterial cellular dimensions across a genomic-scale knockout library

    No full text
    Morphological analysis of the Keio collection reveals correlations between cell width and intracellular width variability. Contours from cells from each Keio deletion strain were extracted from images acquired from the NBRP repository and used to compute the mean width and width profile across each cell. For each cell, we then computed the standard deviation of the width profile divided by the mean width to obtain the intracellular width variability. White circles and error bars were obtained by binning strains by mean width; blue lines are the fit to binned averages. R is Pearson’s correlation coefficient; p-value was computed with Student’s t-test. (PDF 111 kb

    Additional file 6: Table S1. of Rapid, precise quantification of bacterial cellular dimensions across a genomic-scale knockout library

    No full text
    Conditions in chemical genomics screen from [29] that exhibit negative correlation between mean cell width and S-score with p-value less than 0.000154 (Bonferroni multiple-hypothesis correction to p < 0.05 across 324 conditions; see Methods). Table S2. Conditions in chemical genomics screen from [29] that exhibit positive correlation between mean cell width and S-score with p-value less than 0.000154 (Bonferroni multiple-hypothesis correction to p < 0.05 across 324 conditions; see Methods). Table S3. Pairs of COGs and conditions in chemical genomics screen from [29] that exhibit correlations between mean cell width and S-scores with p-value less than 0.000154 (Bonferroni multiple-hypothesis correction to p < 0.05 across 324 conditions; see Methods). *: description from [29] and generously provided by Athanasios Typas. Table S4. Pairs of COGs and conditions in chemical genomics screen from [29] that exhibit correlations between mean cell length and S-scores with p-value less than 0.000154 (Bonferroni multiple-hypothesis correction to p < 0.05 across 324 conditions; see Methods). *: description from [29] and generously provided by Athanasios Typas. (DOCX 101 kb
    corecore