
COUPLING A STOCHASTIC OCCUPANCY MODEL TO ENERGYPLUS TO 
PREDICT HOURLY THERMAL DEMAND OF A NEIGHBOURHOOD 

 
Miaomiao He1, Timothy Lee1, Simon Taylor1, Steven K. Firth1, Kevin Lomas1 

1School of Civil and Building Engineering, Loughborough University, Loughborough, UK 
 
 
 
 
 

ABSTRACT 

When designing and managing integrated renewable 
energy technologies at a community level, prediction 
of hourly thermal demand is essential. Dynamic 
thermal modelling, using deterministic occupancy 
profiles, has been widely used to predict the high-
resolution temporal thermal demand of individual 
buildings. Only in recent years has this approach 
started to be applied to simulate all buildings in a 
neighbourhood or an entire housing stock of a region. 
This study explores the potential of predicting hourly 
thermal demand for a group of dwellings by applying 
a stochastic occupancy model to dynamic thermal 
modelling. A case study with 125 new houses 
demonstrates the approach. The result was a more 
realistic and representative hourly thermal demand 
profile, compared to using standard deterministic 
occupancy profiles.  

INTRODUCTION 
The 2008 Climate Change Act requires the UK to 
achieve at least an 80% cut in greenhouse gas 
emissions by 2050, compared to the 1990s baseline 
(DECC, 2008). Housing is responsible for a quarter 
of the UK’s greenhouse gas emissions, so it would be 
impossible to meet the 2050 objective without 
changing emissions from homes (DECC, 2011). With 
less than 1% annual growth rate of new-build homes, 
it is estimated that 75% of the housing stock in 2050 
will have been constructed before 2014 (Ravetz, 
2008). Substantially improving the energy-efficiency 
of the existing housing stock as well as promoting 
low or zero carbon emissions for new builds is 
expected to play an important role. However, efforts 
to achieve the target cannot rely solely on improving 
the thermal efficiency of houses. There also needs to 
be integration of the full suite of low-carbon 
technologies in homes on both a local and a regional 
scale (RAE, 2010). 

One requirement for such integration and subsequent 
management of low-carbon technologies is a high-
resolution temporal prediction of thermal demand of 
buildings in the area of interest (Orehounig et al, 
2014). Dynamic building energy simulation 
programmes such as EnergyPlus, IES and TRNSYS 
have long been widely used to model temporal (e.g. 
hourly) thermal demand of individual buildings. The 

deployment of dynamic building energy simulation 
programmes for the estimation of dynamic thermal 
demand on a local or regional scale has started to be 
recognized as increasingly important, especially in 
the context of evaluating the implications for the 
energy network (Simpson et al., 2014).  

This work builds upon previous research on the 
evaluation of alternative approaches in dynamic 
energy modelling of UK housing (Taylor et al., 
2013), and the development of a dynamic housing 
stock model for the evaluation of the effectiveness of 
various retrofitting strategies for the housing stock in 
the North East region of England (He et al., 2014). It 
is part of the Self Conserving Urban Environment 
(SECURE) project funded by EPSRC. In previous 
work, standard heating hours and temperature set 
points were implemented in a dynamic housing stock 
model. This approach is adequate in terms of 
predicting annual and monthly thermal demand but is 
not suitable for predicting hourly thermal demand 
because it lacks the variations in schedules and their 
timing that are a feature of real behaviour (Kane et 
al., 2015). This study aims to explore the feasibility 
of coupling a stochastic occupancy model with the 
dynamic housing stock model for the prediction of 
hourly thermal demand for a neighbourhood. 

HEATING PATTERNS 
Demand temperatures and heating hours are 
recognised as the main determinants of building 
energy consumption in housing stock modelling 
(Firth et al., 2010); however, there is ongoing 
discussion in the research field about what values 
should be used for these two parameters. A version 
of BREDEM (Shorrock & Anderson, 1995), the 
Building Research Establishment’s domestic energy 
model, assumes the default heating demand 
temperature in the living room to be 21 °C, with two  
heating periods totalling 9 hours (07:00 – 09:00 and 
16:00 – 23:00) on weekdays and a single period of 16 
hours (07:00 – 23:00) at weekends (Anderson et al., 
2002). The Cambridge Housing Model (Hughes et al, 
2013), which uses a version of BREDEM as its core 
calculation engine, reduces the heating demand 
temperature in the living room to 19 °C, but assumes 
the same heating hours as BREDEM. This 
adjustment resulted in a good fit to the electricity and 
gas consumption data published by DECC (Lee et al., 
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2014). A recent study by Huebner et al. (2013), 
which analysed national survey data, suggested the 
heating demand temperature in the living room 
should be 19.5 °C, and the heating periods should be 
10 hours for both weekdays and weekends. A recent 
study by Kane et al. (2015) analysed heating patterns 
in 249 dwellings in Leicester UK, highlighting the 
diverse heating hours and temperatures in UK homes. 
It was found that among all the homes with central 
heating, about half were heated for two periods each 
day for a total of 10 hours (median heating time 
06:00 – 09:00 and 15:00 – 22:00). One third of them 
were heated for only one period per day but for a 
longer period of 15 hours (median heating time 07:00 
– 23:00). In addition, a small proportion of homes 
(5%) were heated for multiple periods. A large 
variation in mean achieved temperatures was also 
observed in the study, ranging from 11.0 °C to 
30.5 °C with an average mean achieved temperature 
of 20.9 °C (Kane et al., 2015).  

METHODS 
This study uses a stochastic occupancy model to 
generate heating patterns, with the aim of reflecting 
the variability of heating patterns in UK homes 
described in the previous section. This is done by 
assuming that the heating is on and demand 
temperature is achieved whenever there is an active 
occupant (i.e. not asleep) at home. This assumption is 
adequate for modelling modern houses that are well 
insulated and of lightweight construction. Extensions 
to other house types will be discussed later. The 
demand temperatures are assumed to be 19.5 °C in 
the living room and 18 °C in bedrooms, in line with 
findings from Huebner et al. (2013). The heating 
periods are coincident with the actively occupied 
periods derived from the occupancy model. These 
data are fed into the dynamic housing stock model 
(He et al., 2014) for simulating hourly thermal 
demands.  

A dynamic housing stock model 

A dynamic housing stock model was developed to 
estimate the baseline energy demand of the existing 
housing stock in the North East region of England, as 
well as to predict the reduction in energy demand and 
associated CO2 emissions when applying different 
retrofit measures to the existing housing stock (He et 
al., 2014). This model has also been used in a study 
to identify the most cost-effective combinations of all 
measures across the housing stock by embedding a 
multi-objective optimization package into the process 
for making decisions on retrofit solutions (He et al., 
2015). The model takes house details from the 
dataset used by the 2011 version of the Cambridge 
Housing Model (CHM) (Hughes et al, 2013). This 
dataset was in turn derived from English Housing 
Survey (EHS) (DCLG, 2010) data. The CHM dataset 
contains detailed information such as age band, 
dwelling type, floor area, window area, wall, roof, 
floor construction and loft insulation, etc. of 16,150 

representative houses in England. However, 
additional information, such as width and depth, that 
allows the building form of the dwellings to be 
accurately modelled, can only be found in the EHS 
data. The 2011 version of the CHM was chosen 
because it contains an explicit link to the EHS data, 
thus allowing such details to be used, and this link is 
lacking in later versions. 

The dataset so formed is coupled to EnergyPlus 
building simulation software (Crawley et al., 2000). 
EnergyPlus takes an input data file (IDF), in which a 
building model is specified, to run a dynamic 
simulation of a building. In order to automate the 
transformation process, an in-house program called 
the Building Generation Tool (BGT) was developed 
and implemented in programming language C#. It 
takes text file inputs from EHS data and generates 
IDFs for houses of interest. The detailed description 
of the model and the validation against a steady state 
housing stock model can be found in a previous study 
(He et al., 2014). A parametric tool called jEPlus 
(Zhang, 2009) has been used in this study to run 
simulations in EnergyPlus in parallel and to extract 
outputs. Python scripts have been written to process 
and visualise the outputs automatically.  

A stochastic occupancy model 

A stochastic occupancy model developed by 
Richardson et al. (2008) based upon the UK 2000 
Time-Use Survey (TUS) data set was used in this 
study. The UK 2000 TUS was a large survey 
conducted in the year 2000 on how people use their 
time (Ipsos-RSL and Office of National Statistics, 
2000). It contains detailed 24-hour diaries, completed 
at ten-minute resolution by many thousands of 
participants (Richardson et al., 2008). The TUS data 
set was used to derive the transition probability 
matrices for the prediction of how likely the current 
stage will be changed in the next time step. The 
model can then apply the first-order Markov-Chain 
technique (Gamerman, 1997) to generate synthetic 
occupancy data based on these probabilities.  

Households are categorised in the model by number 
of people. A weekday and a weekend profile are 
generated for a household. The aggregate weekday 
and weekend profiles from this model are almost 
identical to the TUS data (Richardon et al., 2008), 
showing that the model has been implemented 
accurately.  

An implementation of the model of Richardson et al. 
(2008) in the form of a Microsoft Excel workbook, 
available for free download (Richardson and 
Thomson, 2008), to provide occupancy profiles for 
individual households is adopted in this study to 
generate thousands of occupancy profiles for 
households with different numbers of occupants. 
Python scripts have been used to process the 
occupancy profiles automatically into a format that 
can be interpreted by the BGT, and consequently can 
be written into the IDFs and simulated in EnergyPlus.  
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Integration framework 

An integration framework has been developed to 
facilitate the coupling of the stochastic occupancy 
model into the dynamic housing stock model. The 
Gane-Sarson data flow diagram of the integration 
framework is shown in Figure 1.  

This framework automates most parts of the process, 
and consequently enables large number of cases to be 
run and large quantities of data to be analysed 
efficiently and effectively. 

RESULTS AND DISCUSSION 

Number of occupancy profiles 

Figure 2 and Figure 3 show 5 different occupancy 
profiles generated by the occupancy model for a 
household with 2 people for a weekday and weekend, 
respectively.  
 

 
Figure 2 Occupancy profiles for a weekday. 

 

 
Figure 3 Occupancy profiles for a weekend. 

 

Assuming that the heating is operating during these 
actively occupied periods according to the set-point 
temperatures described earlier, these occupancy 
profiles can be used to generate heating patterns that 
can be fed into the dynamic housing stock model. For 
the same dwelling, each occupancy profile results in 
different thermal demand when simulated in building 
energy simulation tool such as EnergyPlus. Figure 4 
shows the thermal demand for the same house with 
the 5 different occupancy profiles generated above 
for a weekday. The thermal demand for the same 
house varies significantly with each of the occupancy 
profiles, and therefore, it is difficult to identify a 
typical profile. One way is to take the mean values 
after aggregating the thermal demands corresponding 
to different occupancy profiles. 

Figure 5 shows the mean values of the aggregated 
thermal demand of the house with the same 5 
different occupancy profiles as discussed above. 
Comparing the thermal demand in Figure 5 to Figure 
4, it is clear the peak values in Figure 5 are much 
lower than the peak values in Figure 4, which 
suggests that the mean values of the aggregated 
thermal demand has lower peaks than the thermal 

 
Figure 1 Gane-Sarson data flow diagram (DFD) of the integration framework. 
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demand with individual occupancy profiles. This is a 
well-known phenomenon in the gas industry because 
pipes must be sized according to peak flows, which 
vary relative to the mean flow according to the 
number of households supplied. This effect would 
have a big impact when designing district/communal 
heating systems, especially if technologies such as 
heat pumps are used, where the thermal dynamics 
plays an important role in designing and controlling 
the systems (He et al., 2011).  

 
Figure 4 Thermal demand of a house with 5 different 

occupancy profiles.  

 

 
Figure 5 The mean values of the aggregated thermal 

demand with 5 different occupancy profiles.  
 

Figure 6 shows the mean values of the aggregating 
thermal demand of the same house with 5, 10, 50, 
100, and 1000 profiles for a household with 2 people. 
When increasing the number of occupancy profiles 
from 5 to 10, 50 and 100, the mean values of the 
thermal demand change quite significantly with some 
of the peak values going higher and some lower. 
However, the mean values change little when the 
number of occupancy profiles is increased from 100 
to 1000. 

 
Figure 6 Mean values of the thermal demand of a 

house when aggregating different numbers of 
profiles.  

 

Number of people in a household 

Number of people in a household is another factor 
that might influence the thermal demand of a house. 
Figure 7 shows the mean values of aggregated 
thermal demand of 100 profiles for household with 
different number of people in the same house.  

 
Figure 7 Mean values of aggregated thermal demand 
of 100 profiles for household with different number 

of people. 

 

The thermal demand for a household with 1 – 5 
people follow a similar pattern, i.e. minimum 
demand from 0:00 to 06:00; peak demand around 
8:00; half of the peak demand from 11:00 to 17:00; 
three quarters of the peak demand from 18:00 to 
23:00. However, the peak demand at around 8:00 
varies slightly for the household with different 
number of people. Households with one and two 
people have similar peak demands, and so do those 
with three and five people. A household with 4 
people has the highest peak demand. Between 12:00 
to 18:00, a household that has more than one person 
seems to have a slightly higher demand, but the 
amount does not have a correlation to the number of 
people.  
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Figure 8 Plan view of the housing estate in the case study (http://www.dwh.co.uk/new-

homes/leicestershire/H550901-David-Wilson-at-Quorn/#prettyPhoto[siteplan]/0/).  
 

A case study 

A case study has been carried out to explore the 
potential of coupling a stochastic occupancy model to 
a dynamic housing stock model for the prediction of 
dynamic thermal demand of a neighbourhood. A 
housing estate with 125 new houses in a village near 
Loughborough, Leicestershire in the East Midlands 
of the UK was chosen for this case study. Figure 8 
shows the plan view of the housing estate. This new 
development comprises 21 different styles of houses 
ranging from 2 to 5 bedrooms. There are 66 
detached, 26 semi-detached, 17 mid-terrace and 16 
end-terrace houses. All were built between 2012 and 
2015 in line with the latest building regulations. The 
energy efficiency ratings of all houses are in band B. 
Table 1 shows a summary of one of the home’s 
energy performance related features on its Energy 
Performance Certificate. 

 
Table 1 Summary of one of the homes’ energy 

performance related features on its Energy 
Performance Certificate. 

ELEMENT DESCRIPTION 
Walls Average U value = 0.25 W/m2K 
Roof Average U value = 0.14 W/m2K 
Floor Average U value = 0.16 W/m2K 
Windows High performance glazing 
Main heating Boiler and radiators, mains gas 
Main heating 
controls 

Time and temperature zone control 

Hot water From main system 
Lighting Low energy lighting in all fixed outlets 
Air tightness Air permeability 5.3 m3/h.m2 

 

By assuming that the features in Table 1 apply to all 
houses and making use of data in the sales brochure, 
sufficient information, such as dwelling type, 

dimensions and construction of walls, roof, floor and 
windows, can be converted into the inputs for the 
dynamic housing stock model. 125 occupancy 
profiles from the stochastic occupancy model have 
been used to derive the stochastic heating patterns, 
assuming the living room is heated to 19.5 °C and the 
bedrooms to 18.0 °C during actively occupied hours. 
Each of these heating patterns is randomly assigned 
to one individual dwelling. Consequently, all the 
dwellings with stochastic heating profiles can be 
simulated in EnergyPlus through the integration 
framework (Figure 1). For comparison purposes, 
another set of simulations of all dwelling with the 
same demand temperatures but standard heating 
hours (07:00 – 09:00 and 16:00 – 23:00 for 
weekdays; 07:00 – 23:00 for weekends) has been run. 

Figure 9 shows the results of hourly thermal demands 
predicted with stochastic heating profiles, compared 
to those by standard heating hours for a weekday 
(Friday 1 December, 01/12) followed by a weekend 
(02/12) in the design week. 

 
Figure 9 Hourly thermal demands for 125 houses 

predicted with stochastic heating hours compared to 
standard heating hours.  
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For the case with standard heating hours, due to the 
unified start and end times, high peaks occur at start 
times. This is not  realistic as it is very unlikely that 
all 125 dwellings would be heated to 19.5 °C at the 
same start time. For the case with stochastic 
occupancy profiles, the peaks are much lower 
because the start times are more spread out. The 
thermal demand, as a result, is likely to be a more 
representative profile for all dwellings. More 
interesting perhaps is the situation at the weekend. 
For standard heating hours, the demand profile for a 
weekend is very different from that for a weekday 
due to the distinct heating hours assigned. For 
stochastic profiles, however, the thermal demand 
profiles for a weekday and a weekend are not that 
different. Both have a peak demand at about 07:00, 
drop to a plateau at around 12:00, and rise to a 
smaller peak at about 19:00. This similarity of 
weekday and weekend heating patterns is consistent 
with findings from other studies (Huebner et al, 
2013; Kane et al, 2015). 

Figure 10 shows the results of daily total thermal 
demands predicted with stochastic heating hours, 
compared to those by standard heating hours for the 
design week (01/12 – 07/12). Despite substantial 
differences in the hourly thermal demand profiles 
produced by stochastic occupancy profiles and 
standard heating hours as shown in Figure 9, the 
differences between daily total thermal demands 
during weekdays, i.e. 01/12, 04/12 – 07/12, are 
relatively small (less than 4%). Weekends, however, 
are different, The standard heating pattern results in 
about 20% higher daily total thermal demands, 
compared to those by stochastic heating hours (02/12 
– 03/12). The finding is explained by the lengths of 
the heating periods. At 16 hours, the standard heating 
period is longer than the average period for the 
stochastic case. 

 
Figure 10 Daily total thermal demands predicted 

with stochastic heating hours compared to standard 
heating hours.  

 

CONCLUSIONS 
This paper describes a novel method of coupling a 
stochastic occupancy model to a dynamic housing 

stock model, in order to examine high-resolution 
temporal, e.g. hourly, thermal demands of a 
neighbourhood. The stochastic occupancy profiles 
generated by the model have been applied to derive 
stochastic heating hours. These, together with 
demand temperatures, are fed into the dynamic 
housing stock model that runs EnergyPlus 
simulations. This study concludes that the number of 
the stochastic occupancy profiles that are required to 
generate a general and perhaps more representative 
hourly thermal demand profile for a single dwelling 
is about 100. There is a small impact of the number 
of people in a household on hourly thermal demand 
profiles, mainly affecting the peak values, but all 
profiles for households with 1 – 5 people follow a 
similar pattern. 

This approach has been further explored through a 
case study with 125 dwellings in a housing estate 
with new builds. It has been demonstrated that it is 
possible to gather enough data for a range of 
dwelling types through publicly available 
information to construct models efficiently for 
simulation in EnergyPlus. It has also been established 
that by coupling a stochastic occupancy model to 
generate stochastic heating hours for the dynamic 
housing stock model, it is possible to generate 
potentially more representative hourly thermal 
demand profiles for a neighbourhood than using 
standard heating hours. It was found that hourly 
thermal demand profiles for a weekday and a 
weekend are similar when incorporating stochastic 
heating hours, as opposed to the distinct profiles 
assumed by standard heating hours. This is consistent 
with studies carried out by other researchers. 
Moreover, despite the dramatic differences in hourly 
thermal demand profiles by stochastic and standard 
heating hours, the daily total thermal demands for all 
weekdays are similar. The larger differences in the 
daily total thermal demands for weekends are thought 
to be caused by overestimated heating hours in 
standard heating hours.  

FURTHER WORK 
This novel approach to predict hourly thermal 
demands for a neighbourhood will be further 
explored. It has many applications, especially in the 
context of designing and integrating renewable/low-
carbon heating technologies, as well as evaluating the 
implications for the energy network if in the future 
the thermal demands are shifted to electricity 
demands.  

It was stated earlier that the current model assumes a 
heating system of infinite capacity, such that the air 
temperature of the heated space immediately rises to 
the set-point temperature. This is adequate for the 
modern homes that form the focus of the present 
work, However, it might not be accurate for 
simulating a large solid wall house, as it will take a 
long time (e.g. one or two hours) for the house to be 
heated to the demand temperature.  The possibility 
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will be explored of modelling heating systems more 
accurately, by reducing the capacity to realistic 
levels, for example. This would have an impact on 
the energy use profile, with older houses possibly 
never reaching the set-point temperature during short 
heating periods; but more interestingly, this provides 
a vehicle for predicting the way users interact with 
the controls, e.g. setting the heating to come on 
earlier in order to reach to the set point temperature 
at the desired time.  

In general, heating temperatures in UK homes vary 
substantially; however, it has been identified that the 
heated temperatures within homes differed 
significantly and systematically with the age of the 
household (Kane et al., 2015). This information can 
potentially be added to the current approach. Instead 
of having fixed heating set points for the living room 
and bedroom, varied set points that are linked to the 
age of the oldest person in the household can be 
further developed.  
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