33 research outputs found

    Assessing the utilization of high-resolution 2-field HLA typing in solid organ transplantation.

    Get PDF
    HLA typing in solid organ transplantation (SOT) is necessary for determining HLA-matching status between donor-recipient pairs and assessing patients\u27 anti-HLA antibody profiles. Histocompatibility has traditionally been evaluated based on serologically defined HLA antigens. The evolution of HLA typing and antibody identification technologies, however, has revealed many limitations with using serologic equivalents for assessing compatibility in SOT. The significant improvements to HLA typing introduced by next-generation sequencing (NGS) require an assessment of the impact of this technology on SOT. We have assessed the role of high-resolution 2-field HLA typing (HR-2F) in SOT by retrospectively evaluating NGS-typed pre- and post-SOT cases. HR-2F typing was highly instructive or necessary in 41% (156/385) of the cases. Several pre- and posttransplant scenarios were identified as being better served by HR-2F typing. Five different categories are presented with specific case examples. The experience of another center (Temple University Hospital) is also included, whereby 21% of the cases required HR-2F typing by Sanger sequencing, as supported by other legacy methods, to properly address posttransplant anti-HLA antibody issues

    Mannose Binding Lectin Genotypes Influence Recovery from Hepatitis B Virus Infection

    Get PDF
    Mannose binding lectin (MBL) is a central component of the innate immune response and thus may be important for determining hepatitis B virus (HBV) persistence. Since single-nucleotide polymorphisms (SNPs) in the gene encoding MBL (mbl2) alter the level of functional MBL, we hypothesized that mbl2 genotypes are a determinant of HBV persistence or recovery from viral infection. We tested this hypothesis by using a nested case control design with 189 persons with HBV persistence matched to 338 individuals who had naturally recovered from HBV infection. We determined genotypes of two promoter and three exon 1 SNPs in mbl2 and grouped these genotypes according to the amount of functional MBL production. We found that the promoter SNP −221C, which leads to deficient MBL production, was more common in those subjects with viral persistence (odds ratio [OR], 1.38; 95% confidence interval [CI], 1.01 to 1.89; P = 0.04). Those subjects homozygous for the combination of promoter and exon 1 genotypes associated with the highest amount of functional MBL had significantly increased odds of recovery from infection (OR, 0.55; 95% CI, 0.37 to 0.84; P = 0.005). Conversely, those homozygous for the combination of promoter and exon 1 genotypes which produce the lowest amount of functional MBL were more likely to have viral persistence (OR, 1.76; 95% CI, 1.02 to 3.01; P = 0.04). These data are consistent with the hypothesis that functional MBL plays a central role in the pathogenesis of acute hepatitis B

    An Analysis of Tumor Necrosis Factor α Gene Polymorphisms and Haplotypes with Natural Clearance of Hepatitis C Virus Infection

    No full text
    The cytokine tumor necrosis factor alpha (TNF-α) is important in generating an immune response against a hepatitis C virus (HCV) infection. The functions of TNF-α may be altered by single-nucleotide polymorphisms (SNPs) in its gene, TNF. We hypothesized that SNPs in TNF may be important in determining the outcome of an HCV infection. To test this hypothesis, we typed nine TNF SNPs in a cohort of individuals with well-defined HCV outcomes. Three of these SNPs were typed in a second cohort. Data were analyzed using logistic regression stratifying by ethnicity, since rates of HCV clearance differ in black subjects versus white subjects. The SNP -863A was associated with viral clearance in black subjects (odds ratios (OR) 0.52, 95% confidence interval (CI) 0.29–0.93). Furthermore, the common wild-type haplotype -863C/-308G was associated with viral persistence in black subjects (OR 1.91, 95% CI 1.24–2.95). These findings were independent of linkage with human leukocyte antigen (HLA) alleles. Further study of this polymorphism and haplotype is needed to understand these associations and the role of TNF-α in determining outcomes of HCV infection

    Cytotoxic T-Lymphocyte Antigen 4 Gene and Recovery from Hepatitis B Virus Infection

    No full text
    Cytotoxic T-lymphocyte antigen 4 (CTLA-4) is an inhibitory T-cell receptor expressed by activated and regulatory T cells. We hypothesized that single-nucleotide polymorphisms (SNPs) in the gene encoding CTLA-4 may affect the vigor of the T-cell response to hepatitis B virus (HBV) infection, thus influencing viral persistence. To test this hypothesis, we genotyped six CTLA4 SNPs, from which all frequent haplotypes can be determined, using a large, matched panel of subjects with known HBV outcomes. Haplotypes with these SNPs were constructed for each subject using PHASE software. The haplotype distribution differed between those with viral persistence and those with clearance. Two haplotypes were associated with clearance of HBV infection, which was most likely due to associations with the SNPs - 1722C (odds ratio [OR] = 0.60, P = 0.06) and +49G (OR = 0.73, P = 0.02). The wild-type haplotype, which contains an SNP leading to a decreased T-cell response (+6230A), was associated with viral persistence (OR = 1.32, P = 0.04). These data suggest that CTLA4 influences recovery from HBV infection, which is consistent with the emerging role of T regulatory cells in the pathogenesis of disease

    Genome-Wide CRISPR-Cas9 Screen Identifies MicroRNAs That Regulate Myeloid Leukemia Cell Growth

    No full text
    <div><p>Mammalian microRNA expression is dysregulated in human cancer. However, the functional relevance of many microRNAs in the context of tumor biology remains unclear. Using CRISPR-Cas9 technology, we performed a global loss-of-function screen to simultaneously test the functions of individual microRNAs and protein-coding genes during the growth of a myeloid leukemia cell line. This approach identified evolutionarily conserved human microRNAs that suppress or promote cell growth, revealing that microRNAs are extensively integrated into the molecular networks that control tumor cell physiology. miR-155 was identified as a top microRNA candidate promoting cellular fitness, which we confirmed with two distinct miR-155-targeting CRISPR-Cas9 lentiviral constructs. Further, we performed anti-correlation functional profiling to predict relevant microRNA-tumor suppressor gene or microRNA-oncogene interactions in these cells. This analysis identified miR-150 targeting of p53, a connection that was experimentally validated. Taken together, our study describes a powerful genetic approach by which the function of individual microRNAs can be assessed on a global level, and its use will rapidly advance our understanding of how microRNAs contribute to human disease.</p></div

    Anti-correlation functional profiling identifies relevant miRNA-target interactions, including miR-150 repression of p53, that regulate MV4-11 cell line growth.

    No full text
    <p>(A) Heat map indicating representative oncogenes whose loss leads to decreased cell growth according to Log2 Fold Change values from lentiCRISPRv2 library screen (first column), and functionally anti-correlated miRNAs that are predicted to target each oncogene. Grey boxes indicate that the miRNA is not predicted to bind the 3’UTR of the oncogene (NT = Not targeted). (B) Heat map indicating representative TSGs whose loss lead to increased cell growth according to our Log2 Fold Change values from lentiCRISPRv2 library screen (first column), and miRNAs predicted to target each TSG whose growth anti-correlated in library. Grey boxes indicates that the miRNA is not predicted to bind the 3’UTR of TSG (NT = Not targeted). (C) Schematic showing miR-150 targeting of the p53 3’UTR. (D) Schematic of the miR-150 hairpin sequence as annotated in miRBase and sgRNA design of the miR-150-targeting lentiCRISPRv2 construct (150-CR1). (E) Expression level of miR-150 in MV4-11 cells infected with EV control or 150-CR1 lentiCRISPRv2 constructs determined by qPCR. Expression normalized to 5s. (F) Western blot of p53 in p53-CR1, 150-CR1, and EV control infected MV4-11 cell lines with actin serving as load control. (G) Competitive growth curve of EV (GFP+), p53-CR1 (GFP+), or 150-CR1 (GFP+) infected MV4-11 cells mixed ~1:1 with WT MV4-11 cells at time point 0. Y-axis = (%GFP+ cells at indicated time point)/(%GFP+ cells initial). (A, B) Only expressed protein-coding genes and microRNAs with p-values <0.05 were analyzed. Data represented as mean +/- SEM. P-values as indicated: *≤0.05, **≤0.01, ***≤0.001, and ns p>0.05. See also <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0153689#pone.0153689.s004" target="_blank">S3 Table</a>.</p

    Genetic Protection against Hepatitis B Virus Conferred by CCR5Δ32: Evidence that CCR5 Contributes to Viral Persistence

    Get PDF
    Recovery from acute hepatitis B virus (HBV) infection requires a broad, vigorous T-cell response, which is enhanced in mice when chemokine receptor 5 (CCR5) is missing. To test the hypothesis that production of a nonfunctional CCR5 (CCR5Δ32 [a functionally null allele containing a 32-bp deletion]) increases the likelihood of recovery from hepatitis B in humans, we studied 526 persons from three cohorts in which one person with HBV persistence was matched to two persons who recovered from an HBV infection. Recovery or persistence was determined prior to availability of lamivudine. We determined genotypes for CCR5Δ32 and for polymorphisms in the CCR5 promoter and in coding regions of the neighboring genes, chemokine receptor 2 (CCR2) and chemokine receptor-like 2 (CCRL2). Allele and haplotype frequencies were compared among the 190 persons with viral recovery and the 336 with persistence by use of conditional logistic regression. CCR5Δ32 reduced the risk of developing a persistent HBV infection by nearly half (odds ratio [OR], 0.53; 95% confidence interval [CI], 0.33 to 0.83; P = 0.006). This association was virtually identical in persons with and without a concomitant human immunodeficiency virus infection. Of the nine individuals who were homozygous for the deletion, eight recovered from infection (OR, 0.25; 95% CI, 0.03 to 1.99; P = 0.19). None of the other neighboring polymorphisms examined were associated with HBV outcome. These data demonstrate a protective effect of CCR5Δ32 in recovery from an HBV infection, provide genetic epidemiological evidence for a role of CCR5 in the immune response to HBV, and suggest a potential therapeutic treatment for patients persistently infected with HBV
    corecore