77 research outputs found

    Forschungsschiff METEOR Reise Nr. 61 (2004) - Nordost-Atlantik

    Get PDF
    R/V METEOR Cruise No. 61 was divided into three different legs, which all focused on the NEAtlantic to the west of Ireland from the Porcupine Seabight towards the Rockall Bank. Legs 1 and 3 concentrated on geo-biological studies on the carbonate mounds in this region, which are covered by a unique cold water coral fauna. Leg 2 dealt with seismic investigations in order to investigate the extension processes that led to the development of the Porcupine rift basin. The foci of the individual legs were on the following themes. M61-1 was a multidisciplinary cruise addressing biological, paleo-geological and hydrographical scientific objectives in the carbonate mound provinces west of Ireland in the eastern Porcupine Seabight and on the Rockall Bank. The cruise started in Lisbon (Portugal) and ended in Cork (Ireland). M61-1 activities were embedded within the ESF-DFG MOUNDFORCE project of the EUROMARGINS Programme. Together with the succeeding M61-3 cruise, these Meteor activities document Germany´s strong scientific and logistic support for the success of this challenging programme. Investigations are also designed as a preparatory cruise for the EUproject HERMES (Hotspot Ecosystem Research on the Margins of European Seas; start April 2005). All institutions participating in M61-1 are partners in HERMES Work package 2 "Coral Reef and Carbonate Mound Systems". M 61-2 was directed at researching the earth's crust in the vicinity of the Porcupine rift basin. During this leg, seismic research has been undertaken in the Porcupine Basin west of Ireland, an area that represents a natural laboratory for the investigation of extensional processes. Firstly, both sides of a rift basin occurring in close proximity to each other could have been studied here, allowing questions about the symmetry of extension to be addressed by several east-west profiles parallel to the direction of extension. Secondly, the amount of extension increases from north to south, so a series of east-west cross sections on different latitudes has provided information on crustal structure during variable extension. The spatial changes between these sections also represent the temporal development of the rift through continued extension. In order to achieve these research goals, a series of east-west oriented wide angle reflection profiles in the Porcupine Basin has been acquired. These profiles aid in the explanation of extensional processes and their development through continued extension. They also address insufficiently explained questions about the initiation of large scale magmatism and intrusion, the onset of mantle serpentinisation and the development of detachment faults. M61-3 During this leg, the only recently discovered 'carbonate mounds' on the NWEuropean continental margin have been investigated, which represent unique geo- and ecosystems for European waters. The broad scientific interest that is directed at these mounds is reflected in three EU-projects, which until recently almost exclusively concentrated their efforts on the mounds, as well as the currently operating ESF-EUROMARGINS project MOUNDFORCE M 61-3 focused on the use of a 'Remotely Operated Vehicle' (ROV) for the investigation of the carbonate mounds. The primary tasks of Bremen's QUEST ROV were a detailed characterization of individual mound structures, selective sample collection and the retrieval of sensor systems placed at the seafloor one year before. These ROV tasks have been supplemented by hydro-acoustic measurements and conventional sediment sampling in order to work - in close collaboration with M61-1 - on the main research focuses of the MOUNDFORCE project: (a) analysis of the environmental factors that drive the development of the 'carbonate mounds', (b) surveying the benthic communities in dependence of changing environmental factors and (c) investigations to the stabilization and lithification of the mound sediments

    Along- and across-axis variations in crustal thickness and structure at the Mid-Atlantic Ridge at 5°S obtained from wide-angle seismic tomography: implications for ridge segmentation

    Get PDF
    Two end‐member styles of crustal accretion are observed at two adjacent spreading segments at the Mid‐Atlantic Ridge at 5°S: focused accretion to the segment center with rapid crustal thinning toward the transform in the northern segment and crustal thickening toward the transform at an oceanic core complex in the southern segment. Our results were obtained by tomographic inversion of wide‐angle seismic reflection and refraction data collected along three intersecting profiles. The segment north of the 5°S fracture zone is characterized by a well‐developed median valley with a pronounced seafloor bulge in the segment center. A discrete portion of anomalously low velocities (−0.4 to −0.5 km/s relative to average off‐axis structure) at depths of ∼2.5 km beneath this bulge is possibly related to the presence of elevated temperatures and perhaps small portions of partial melt. This suggests that this segment is currently in a magmatically active period, which is confirmed by the observation of fresh lava flows and ongoing high‐temperature hydrothermal activity at the seafloor. Close to the current spreading axis, the crust thins rapidly from 8.5 km beneath the segment center to less than 3 km beneath the transform fault which indicates that melt supply here is strongly focused to the segment center. The reduction in crustal thickness is almost exclusively accommodated by the thinning of velocity portions indicative of seismic layer 3. The transform fault is characterized by more uniform velocity gradients throughout the entire crustal section and very low upper mantle velocities of 7.2–7.3 km/s indicating that serpentinization could be as much as 25% at 3.5 km depth. In contrast, ∼4.1 Ma old crust of the northern segment shows only minor thinning from the segment center toward the segment end. Here, the transform is characterized by a normal seismic layer 2/3 transition suggesting robust melt supply to the segment end at those times. In the adjacent southern segment, the crust thickens from ∼2.5 km beneath the flank of an oceanic core complex to ∼5.0 km at the segment boundary. The observed changes in crustal thickness show a significant temporal and lateral variability in melt supply and suggest a more complex crustal emplacement process than predicted by models of focused melt supply to the segment centers

    Mid-depth internal wave energy off the Iberian Peninsula estimated from seismic reflection data

    Get PDF
    Energy levels of internal waves are estimated from seismic reflection data. Three legacy seismic sections from 1993 and 1997 obtained off the Iberian Peninsula have been analyzed for acoustic reflections within the water column. The reflections are aligned continuously for up to several kilometers over large parts of the sections and in the depth interval from 200 to 2000 m. Depth variations of these reflections are thought to be caused by the background internal wave field. From the variations we derive horizontal wave number spectra of normalized internal wave displacement. The general slope of the power density spectra is remarkably consistent for all sections and agrees well with model spectra for internal waves. Significant differences within the sections can be found when sufficiently large subsections are averaged. The spatial variation of the energy level indicates increasing internal wave activity with shallower water depths as well as near a subsurface eddy

    Movement along a low-angle normal fault: The S reflector west of Spain

    Get PDF
    [1] The existence of normal faults that moved at low angles (less than 20°) has long been debated. One possible low-angle fault is the S detachment at the west Galicia (Spain) margin and thought to occur at the top of serpentinized mantle. It is unlikely that S was a large submarine slide as it was probably active over several million years without the development of any compressional features such as toe thrusts, it appears to have rooted beneath the conjugate Flemish Cap margin, and it is similar to structures elsewhere that also appear to be rooted detachments. Here we analyze depth images to identify synrift sediment packages above S and use the geometry of these synrift packages to constrain the angle at which S both formed and remained active. We find that S must have remained active at angles below 15°, too low to be explained simply by the low friction coefficient of partially serpentinized peridotites. Instead, we suggest that transient high fluid pressures must have developed within the serpentinites and propose a model in which anastomosing fault strands are alternately active and sealed, enabling moderately high fluid pressures to develop

    The Whereabouts of Citizenship Education in Japan

    Get PDF
    We combine structural balancing with thermal and strength-envelope analysis of the Cascadia accretionary wedge to determine the influence thermal gradient has on the structure of the prism. BSR-derived heat flow in the Cascadia accretionary margin decreases from 90–110 mW/m2 at the deformation front to 45–70 mW/m2 in the upper slope. Extension of the thermal gradient to the top of the oceanic crust shows that the base of the prism reaches temperatures between 150–200°C and 250–300°C at the deformation front and the base of the upper slope, respectively. This high thermal gradient favors the development of a vertical strain gradient, which is accommodated by heterogeneous deformation of the accretionary prism. This process produces two overlying thrust wedges, a basal duplex and an overlying landward- or seaward-vergent imbricate stack. The thermal structure also influences the deformation distribution and structural style along the shortening direction. Initiation of plastic deformation at the base of the prism below the Cascadia upper slope affects the wedge geometry, changing its taper angle and favoring the development of a midcrustal duplex structure that propagates seaward as a dynamic backstop. Uplift related with this underplating process is accompanied with deep incision of submarine canyons, sliding and normal faulting in the upper slope. Heterogeneous deformation accommodated by the development of transfer faults separating landward-vergent from seaward-vergent domains is also observed along the margin. Landward-vergent areas accommodate 30–40% shortening at the front of the wedge, while in the narrower and thicker seaward-vergent segments shortening occurs mostly by underplating below the upper slope

    Crustal structure of a rifted oceanic core complex and its conjugate side at the MAR at 5°S: implications for melt extraction during detachment faulting and core complex formation

    Get PDF
    We present results of a seismic refraction experiment which determines the crustal and upper-mantle structure of an oceanic core complex (OCC) and its conjugate side located south of the 5°S ridge–transform intersection at the Mid-Atlantic Ridge. The core complex with a corrugated surface has been split by a change in location of active seafloor spreading, resulting in two massifs on either side of the current spreading axis. We applied a joint tomographic inversion of wide-angle reflected and refracted phases for five intersecting seismic profiles. The obtained velocity models are used to constrain the magmatic evolution of the core complex from the analysis of seismic layer 3 and crustal thickness. An abrupt increase of crustal velocities at shallow depth coincides with the onset of the seafloor corrugations at the exposed footwall. The observed velocity structure is consistent with the presence of gabbros directly beneath the corrugated fault surface. The thickness of the high-velocity body is constrained by PmP reflections to vary along and across axis between <3 and 5 km. The thickest crust is associated with the central phase of detachment faulting at the higher-elevated northern portion of the massif. Beneath the breakaway of the OCC the crust is 2.5 km thick and reveals significantly lower velocities. This implies that the fault initially exhumed low-velocity material overlying the gabbro plutons. In contrast, crust formed at the conjugate side during OCC formation is characterized by an up to 2-km-thick seismic layer 2 overlying a 1.7-km-thick seismic layer 3. Obtained upper-mantle velocities range from 7.3 to 7.9 km s−1 and seem to increase with distance from the median valley. However, velocities of 7.3–7.5 km s−1 beneath the older portions of the OCC may derive from deep fluid circulation and related hydrothermal alteration, which may likely be facilitated by the subsequent rifting. Our velocity models reveal a strongly asymmetric velocity structure across the ridge axis, associated with the accretion of gabbros into the footwall of the detachment fault and upper-crustal portions concentrated at the conjugate side. Our results do not support a substantial increase in the axial ridge's melt supply related to the final phase of detachment faulting. Hence, the footwall rifting at 5°S may be a generic mechanism of detachment termination under very low melt conditions, as predicted by recent numerical models of Tucholke et al

    The formation of passive margins: constraints from the crustal structure and segmentation of the deep Galicia margin, Spain

    Get PDF
    The crustal structure of the Mesozoic deep Galicia margin and adjacent ocean-continent boundary (OCB) was investigated by seismic reflection (including pre-stack depth migration and attenuation of seismic waves with time). The seismic data were calibrated using numerous geological samples recovered by drilling and/or by diving with submersible. The N-S trending margin and OCB are divided in two distinct segments by NE-SW synrift transverse faults locally reactivated and inverted by Cenozoic tectonics. The transverse faulting and OCB segmentation result from crustal stretching probably in a NE-SW direction during the rifting stage of the margin in early Cretaceous times. The Cenozoic tectonics are related to Iberia-Eurasia convergence in Palaeogene times (Pyrenean event). In both segments of the deep margin, the seismic crust is made of four horizontal layers: (1) two sedimentary layers corresponding to post- and syn-rift sequences, where velocity ranges from 1.9 to 3.5 km s−1, and where the Q factor is low, the two sedimentary layers being separated by a strong reflector marking the break-up unconformity; (2) a faulted layer, where velocity ranges from 4.0 to 5.2 km s−1, and where the Q factor is high. This layer corresponds to the margin tilted blocks, where continental basement and lithified pre-rift sediments were sampled; (3) the lower seismic crust, where the velocity (7 km s−1 and more) and the Q factor are the highest. This layer, probably made of partly serpentinized peridotite, is roofed by a strong S-S’ seismic reflector, and resting on a scattering, poorly reflective Moho. A composite model, based both on analogue modelling of lithosphere stretching and on available structural data, accounts for the present structure of the margin and OCB. Stretching and thinning of the lithosphere are accommodated by boudinage of the brittle levels (upper crust and uppermost mantle) and by simple shear in the ductile levels (lower crust and upper lithospheric mantle). Two main conjugate shear zones may account for the observations and seismic data: one (SZ1), located in the lower ductile continental crust, is synthetic to the tilting sense of the margin crustal blocks; another (SZ2), located in the ductile mantle, accounts for the deformation of mantle terranes and their final unroofing and exposure at the continental rift axis (now the OCB). The S-S′ reflector is interpreted as the seismic signature of the tectonic contact between crustal terranes and mantle rocks partly transformed into serpentinite by syn-rift hydrothermal activity. It is probably related to both shear zones SZ1 and SZ2. The seismic Moho is lower within the lithosphere, at the fresh-serpentinized peridotite boundary

    Microseismicity of the Mid-Atlantic Ridge at 7°S-8°15′S and at the Logatchev Massif oceanic core complex at 14°40′N-14°50′N

    Get PDF
    Lithospheric formation at slow spreading rates is heterogeneous with multiple modalities, favoring symmetric spreading where magmatism dominates or core complex and inside corner high formation where tectonics dominate. We report microseismicity from three deployments of seismic networks at the Mid-Atlantic Ridge (MAR). Two networks surveyed the MAR near 7 degrees S in the vicinity of the Ascension transform fault. Three inside corner high settings were investigated. However, they remained seismically largely inactive and major seismic activity occurred along the center of the median valley. In contrast, at the Logatchev Massif core complex at 14 degrees 45N seismicity was sparse within the center of the median valley but concentrated along the eastern rift mountains just west of the serpentine hosted Logatchev hydrothermal vent field. To the north and south of the massif, however, seismic activity occurred along the ridge axis, emphasizing the asymmetry of seismicity at the Logatchev segment. Focal mechanisms indicated a large number of reverse faulting events occurring in the vicinity of the vent field at 3-5 km depth, which we interpret to reflect volume expansion accompanying serpentinization. At shallower depth of 2-4 km, some earthquakes in the vicinity of the vent field showed normal faulting behavior, suggesting that normal faults facilitates hydrothermal circulation feeding the vent field. Further, a second set of cross-cutting faults occurred, indicating that the surface location of the field is controlled by local fault systems
    • …
    corecore