399 research outputs found

    Movement along a low-angle normal fault: The S reflector west of Spain

    Get PDF
    [1] The existence of normal faults that moved at low angles (less than 20°) has long been debated. One possible low-angle fault is the S detachment at the west Galicia (Spain) margin and thought to occur at the top of serpentinized mantle. It is unlikely that S was a large submarine slide as it was probably active over several million years without the development of any compressional features such as toe thrusts, it appears to have rooted beneath the conjugate Flemish Cap margin, and it is similar to structures elsewhere that also appear to be rooted detachments. Here we analyze depth images to identify synrift sediment packages above S and use the geometry of these synrift packages to constrain the angle at which S both formed and remained active. We find that S must have remained active at angles below 15°, too low to be explained simply by the low friction coefficient of partially serpentinized peridotites. Instead, we suggest that transient high fluid pressures must have developed within the serpentinites and propose a model in which anastomosing fault strands are alternately active and sealed, enabling moderately high fluid pressures to develop

    The Whereabouts of Citizenship Education in Japan

    Get PDF
    We combine structural balancing with thermal and strength-envelope analysis of the Cascadia accretionary wedge to determine the influence thermal gradient has on the structure of the prism. BSR-derived heat flow in the Cascadia accretionary margin decreases from 90–110 mW/m2 at the deformation front to 45–70 mW/m2 in the upper slope. Extension of the thermal gradient to the top of the oceanic crust shows that the base of the prism reaches temperatures between 150–200°C and 250–300°C at the deformation front and the base of the upper slope, respectively. This high thermal gradient favors the development of a vertical strain gradient, which is accommodated by heterogeneous deformation of the accretionary prism. This process produces two overlying thrust wedges, a basal duplex and an overlying landward- or seaward-vergent imbricate stack. The thermal structure also influences the deformation distribution and structural style along the shortening direction. Initiation of plastic deformation at the base of the prism below the Cascadia upper slope affects the wedge geometry, changing its taper angle and favoring the development of a midcrustal duplex structure that propagates seaward as a dynamic backstop. Uplift related with this underplating process is accompanied with deep incision of submarine canyons, sliding and normal faulting in the upper slope. Heterogeneous deformation accommodated by the development of transfer faults separating landward-vergent from seaward-vergent domains is also observed along the margin. Landward-vergent areas accommodate 30–40% shortening at the front of the wedge, while in the narrower and thicker seaward-vergent segments shortening occurs mostly by underplating below the upper slope

    Ocean warming affects the distribution and abundance of resident fishes by changing their reproductive scope

    Get PDF
    With ocean warming predicted globally, one of the mechanisms driving distributional shifts and changes in the abundance of resident fishes is reproductive output. The relationship between sea surface temperature and the reproductive activity of a eurythermic, resident coastal species, blacktail seabream Diplodus sargus capensis, was examined in the ‘‘ocean warming’’ hotspot of the northern Benguela. Reproductive activity was found to be restricted to periods when the water temperature dropped below 20 _C. A metadata analysis conducted on the D. sargus sub-species complex similarly showed that reproductive activity was restricted to temperatures between 15 and 20 _C, regardless of the range in ambient water temperature. Based on these findings and using satellite derived SST information, we examined D. s. capensis’s total and seasonal ‘‘reproductive scope’’ that is defined as either the area suitable for spawning each year or the duration of its potential spawning season at a fixed geographical locality, respectively. Trends were examined over the last three decades. Reproductive scope by area was found to be shrinking at a rate of 7 % per decade in southern Angola and expanding at a rate of 6 % per decade in northern Namibia. Reproductive scope by season decreased by 1.05 months per decade in Namibe, southern Angola and increased by 0.76 months per decade in Hentiesbaai, northern Namibia. Changes in reproductive scope may be a driving mechanism of distributional shifts in resident fishes, although the rate of the shifts is likely to be slow. More importantly, changes in reproductive scope will not be uniform throughout fish distributions and will most likely result in heterogeneous variations in fish abundance

    The hot pick-up technique for batch assembly of van der Waals heterostructures

    Get PDF
    The assembly of individual two-dimensional materials into van der Waals heterostructures enables the construction of layered three-dimensional materials with desirable electronic and optical properties. A core problem in the fabrication of these structures is the formation of clean interfaces between the individual two-dimensional materials which would affect device performance. We present here a technique for the rapid batch fabrication of van der Waals heterostructures, demonstrated by the controlled production of 22 mono-, bi- and trilayer graphene stacks encapsulated in hexagonal boron nitride with close to 100% yield. For the monolayer devices we found semiclassical mean free paths up to 0.9 micrometer, with the narrowest samples showing clear indications of the transport being affected by boundary scattering. The presented method readily lends itself to fabrication of van der Waals heterostructures in both ambient and controlled atmospheres, while the ability to assemble pre-patterned layers paves the way for complex three-dimensional architectures.Comment: 32 pages, 6 figures, 34 references, 14 supplementary figure

    The effects of climate change on the ecology of fishes

    Get PDF
    Ocean warming and acidification are set to reshuffle life on Earth and alter ecological processes that underpin the biodiversity, health, productivity, and resilience of ecosystems. Fishes contribute significantly to marine, estuarine, and freshwater species diversity and the functioning of marine ecosystems, and are not immune to climate change impacts. Whilst considerable effort has been placed on studying the effects of climate change on fishes, much emphasis has been placed on their (eco)physiology and at the organismal level. Fishes are affected by climate change through impacts at various levels of biological organisation and through a large variety of traits, making it difficult to make generalisations regarding fish responses to climate change. Here, we briefly review the current state of knowledge of climate change effects on fishes across a wide range of subfields of fish ecology and evaluate these effects at various scales of biological organisation (from genes to ecosystems). We argue that a more holistic synthesis of the various interconnected subfields of fish ecology and integration of responses at different levels of biological organisation are needed for a better understanding of how fishes and their populations and communities might respond or adapt to the multi-stressor effects of climate change. We postulate that studies using natural analogues of climate change, meta-analyses, advanced integrative modelling approaches, and lessons learned from past extreme climate events could help reveal some general patterns of climate change impacts on fishes that are valuable for management and conservation approaches. Whilst these might not reveal many of the underlying mechanisms responsible for observed biodiversity and community change, their insights are useful to help create better climate adaptation strategies for their preservation in a rapidly changing ocean

    Predictor variables for moggel (Labeo umbratus) biomass and production in small South African reservoirs

    Get PDF
    South Africa has approximately 3 100 registered reservoirs, ranging in size from 1–1 000 hectares, with a surface area totalling 84 439 hectares (SADC Surface Water Body Database, unpublished data). Within southern and eastern Africa, Lindqvist (1994) estimated the number of small reservoirs to be between 50 000 and 100 000. Given Bernacsek’s (1986) estimate of the total fishery potential of small reservoirs in Africa at between 1 and 2.3 million tons, this number of reservoirs clearly could provide fishery opportunities for rural communities

    Reproductive biology of a riverine cyprinid, Labeo umbratus (Teleostei: Cyprinidae), in small South African reservoirs

    Get PDF
    The reproductive and recruitment characteristics of moggel, Labeo umbratus, populations were examined in four small South African reservoirs. Reproduction, characterised by an extended spawning season, high fecundity, short incubation time and rapid larval development, appears to be ideally suited to the highly variable environment of small reservoirs. Evidence suggested that L. umbratus spawns in the reservoirs. In two reservoirs where samples were conducted monthly, GSI (gonado-somatic index) was positively correlated with both water temperature and day length, whilst the CPUE (catch per unit effort) of juveniles was not related to any environmental variable. The success of moggel spawning appeared to increase when there was early spring and consistent summer rainfall

    Quantitative optical mapping of two-dimensional materials

    Get PDF
    The pace of two-dimensional materials (2DM) research has been greatly accelerated by the ability to identify exfoliated thicknesses down to a monolayer from their optical contrast. Since this process requires time-consuming and error-prone manual assignment to avoid false-positives from image features with similar contrast, efforts towards fast and reliable automated assignments schemes is essential. We show that by modelling the expected 2DM contrast in digitally captured images, we can automatically identify candidate regions of 2DM. More importantly, we show a computationally-light machine vision strategy for eliminating false-positives from this set of 2DM candidates through the combined use of binary thresholding, opening and closing filters, and shape-analysis from edge detection. Calculation of data pyramids for arbitrarily high-resolution optical coverage maps of two-dimensional materials produced in this way allows the real-time presentation and processing of this image data in a zoomable interface, enabling large datasets to be explored and analysed with ease. The result is that a standard optical microscope with CCD camera can be used as an analysis tool able to accurately determine the coverage, residue/contamination concentration, and layer number for a wide range of presented 2DMs

    Conductance quantization suppression in the quantum Hall regime

    Get PDF
    Conductance quantization is the hallmark of non-interacting confined systems. The authors show that the quantization in graphene nanoconstrictions with low edge disorder is suppressed in the quantum Hall regime. This is explained by the addition of new conductance channels due to electrostatic screening

    Fast and low loss flexoelectro-optic liquid crystal phase modulator with a chiral nematic reflector.

    Get PDF
    In this paper, we demonstrate a flexoelectro-optic liquid crystal phase-only device that uses a chiral nematic reflector to achieve full 2Ï€ phase modulation. This configuration is found to be very tolerant to imperfections in the chiral nematic reflector provided that the flexoelectro-optic LC layer fulfils the half-wave condition. Encouragingly, the modulation in the phase, which operates at kHz frame rates, is also accompanied by low amplitude modulation. The configuration demonstrated herein is particularly promising for the development of next-generation liquid crystal on silicon spatial light modulators
    • …
    corecore