72 research outputs found

    Assessment of tumor redox status through (S)-4-(3-[18F]fluoropropyl)-L-glutamic acid positron emission tomography imaging of system xc- activity

    Get PDF
    The cell's endogenous antioxidant system is vital to maintenance of redox homeostasis. Despite its central role in normal and pathophysiology, no non-invasive tools exist to measure this system in patients. The cystine/glutamate antiporter system xc- maintains the balance between intracellular reactive oxygen species and antioxidant production through the provision of cystine, a key precursor in glutathione biosynthesis. Here we show that tumor cell retention of a system xc--specific positron emission tomography radiotracer, (S)-4-(3-[18F]fluoropropyl)-L-glutamic acid ([18F]FSPG), decreases in proportion to levels of oxidative stress following treatment with a range of redox-active compounds. The decrease in [18F]FSPG retention correlated with a depletion of intracellular cystine resulting from increased de novo glutathione biosynthesis, shown through [U-13C6, U-15N2]cystine isotopic tracing. In vivo, treatment with the chemotherapeutic doxorubicin decreased [18F]FSPG tumor uptake in a mouse model of ovarian cancer, coinciding with markers of oxidative stress but preceding tumor shrinkage and decreased glucose utilization. Having already been used in pilot clinical trials, [18F]FSPG PET could be rapidly translated to the clinic as an early redox indicator of tumor response to treatment

    mRNA therapy corrects defective glutathione metabolism and restores ureagenesis in preclinical argininosuccinic aciduria

    Get PDF
    The urea cycle enzyme argininosuccinate lyase (ASL) enables the clearance of neurotoxic ammonia and the biosynthesis of arginine. Patients with ASL deficiency present with argininosuccinic aciduria, an inherited metabolic disease with hyperammonemia and a systemic phenotype coinciding with neurocognitive impairment and chronic liver disease. Here, we describe the dysregulation of glutathione biosynthesis and upstream cysteine utilization in ASL-deficient patients and mice using targeted metabolomics and in vivo positron emission tomography (PET) imaging using ( S)-4-(3-18F-fluoropropyl)-l-glutamate ([18F]FSPG). Up-regulation of cysteine metabolism contrasted with glutathione depletion and down-regulated antioxidant pathways. To assess hepatic glutathione dysregulation and liver disease, we present [18F]FSPG PET as a noninvasive diagnostic tool to monitor therapeutic response in argininosuccinic aciduria. Human hASL mRNA encapsulated in lipid nanoparticles improved glutathione metabolism and chronic liver disease. In addition, hASL mRNA therapy corrected and rescued the neonatal and adult Asl-deficient mouse phenotypes, respectively, enhancing ureagenesis. These findings provide mechanistic insights in liver glutathione metabolism and support clinical translation of mRNA therapy for argininosuccinic aciduria. </p

    Use of whole-genome sequencing to distinguish relapse from reinfection in a completed tuberculosis clinical trial

    Get PDF
    Background: RIFAQUIN was a tuberculosis chemotherapy trial in southern Africa including regimens with high-dose rifapentine with moxifloxacin. Here, the application of whole-genome sequencing (WGS) is evaluated within RIFAQUIN for identifying new infections in treated patients as either relapses or reinfections. WGS is further compared with mycobacterial interspersed repetitive units-variable number tandem repeats (MIRU-VNTR) typing. This is the first report of WGS being used to evaluate new infections in a completed clinical trial for which all treatment and epidemiological data are available for analysis. Methods: DNA from 36 paired samples of Mycobacterium tuberculosis cultured from patients before and after treatment was typed using 24-loci MIRU-VNTR, in silico spoligotyping and WGS. Following WGS, the sequences were mapped against the reference strain H37Rv, the single-nucleotide polymorphism (SNP) differences between pairs were identified, and a phylogenetic reconstruction was performed. Results: WGS indicated that 32 of the paired samples had a very low number of SNP differences (0–5; likely relapses). One pair had an intermediate number of SNP differences, and was likely the result of a mixed infection with a pre-treatment minor genotype that was highly related to the post-treatment genotype; this was reclassified as a relapse, in contrast to the MIRU-VNTR result. The remaining three pairs had very high SNP differences (>750; likely reinfections). Conclusions: WGS and MIRU-VNTR both similarly differentiated relapses and reinfections, but WGS provided significant extra information. The low proportion of reinfections seen suggests that in standard chemotherapy trials with up to 24 months of follow-up, typing the strains brings little benefit to an analysis of the trial outcome in terms of differentiating relapse and reinfection. However, there is a benefit to using WGS as compared to MIRU-VNTR in terms of the additional genotype information obtained, in partic ular for defining the presence of mixed infections and the potential to identify known and novel drug-resistance markers

    Investigation of hospital discharge cases and SARS-CoV-2 introduction into Lothian care homes

    Get PDF
    Background The first epidemic wave of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in Scotland resulted in high case numbers and mortality in care homes. In Lothian, over one-third of care homes reported an outbreak, while there was limited testing of hospital patients discharged to care homes. Aim To investigate patients discharged from hospitals as a source of SARS-CoV-2 introduction into care homes during the first epidemic wave. Methods A clinical review was performed for all patients discharges from hospitals to care homes from 1st March 2020 to 31st May 2020. Episodes were ruled out based on coronavirus disease 2019 (COVID-19) test history, clinical assessment at discharge, whole-genome sequencing (WGS) data and an infectious period of 14 days. Clinical samples were processed for WGS, and consensus genomes generated were used for analysis using Cluster Investigation and Virus Epidemiological Tool software. Patient timelines were obtained using electronic hospital records. Findings In total, 787 patients discharged from hospitals to care homes were identified. Of these, 776 (99%) were ruled out for subsequent introduction of SARS-CoV-2 into care homes. However, for 10 episodes, the results were inconclusive as there was low genomic diversity in consensus genomes or no sequencing data were available. Only one discharge episode had a genomic, time and location link to positive cases during hospital admission, leading to 10 positive cases in their care home. Conclusion The majority of patients discharged from hospitals were ruled out for introduction of SARS-CoV-2 into care homes, highlighting the importance of screening all new admissions when faced with a novel emerging virus and no available vaccine

    SARS-CoV-2 Omicron is an immune escape variant with an altered cell entry pathway

    Get PDF
    Vaccines based on the spike protein of SARS-CoV-2 are a cornerstone of the public health response to COVID-19. The emergence of hypermutated, increasingly transmissible variants of concern (VOCs) threaten this strategy. Omicron (B.1.1.529), the fifth VOC to be described, harbours multiple amino acid mutations in spike, half of which lie within the receptor-binding domain. Here we demonstrate substantial evasion of neutralization by Omicron BA.1 and BA.2 variants in vitro using sera from individuals vaccinated with ChAdOx1, BNT162b2 and mRNA-1273. These data were mirrored by a substantial reduction in real-world vaccine effectiveness that was partially restored by booster vaccination. The Omicron variants BA.1 and BA.2 did not induce cell syncytia in vitro and favoured a TMPRSS2-independent endosomal entry pathway, these phenotypes mapping to distinct regions of the spike protein. Impaired cell fusion was determined by the receptor-binding domain, while endosomal entry mapped to the S2 domain. Such marked changes in antigenicity and replicative biology may underlie the rapid global spread and altered pathogenicity of the Omicron variant

    Imaging tumour cell metabolism using hyperpolarized 13C magnetic resonance spectroscopy

    No full text
    Patients with similar tumour types frequently show different responses to the same therapy. The development of new treatments would benefit, therefore, from imaging methods that allow an early assessment of treatment response in individual patients, allowing rapid selection of the most effective treatment. We have been using 13C MRSI (magnetic resonance spectroscopic imaging) of tumour cell metabolism, using hyperpolarized 13C-labelled cellular metabolites, to detect treatment response. Nuclear spin hyperpolarization can increase sensitivity in the magnetic resonance experiment &amp;gt;10000 times, allowing us to image labelled cell substrates in vivo and their subsequent metabolism. We showed that exchange of hyperpolarized 13C label between lactate and pyruvate, catalysed by lactate dehydrogenase, was decreased in treated tumours undergoing drug-induced cell death, and that tissue pH could be imaged from the ratio of the signal intensities of hyperpolarized H13CO3− and 13CO2 following intravenous injection of hyperpolarized H13CO3. Tumour cell glutaminase activity, a potential measure of cell proliferation, can be determined using hyperpolarized [5-13C]glutamine, and treatment-induced tumour cell necrosis can be imaged in vivo from measurements of the conversion of hyperpolarized [1,4-13C2]fumarate into malate. Since these substrates are endogenous and, in some cases, have already been safely infused into patients, these techniques have the potential to translate to the clinic.</jats:p

    Imaging tumour cell metabolism using hyperpolarized 13C magnetic resonance spectroscopy. Biochem.Soc.Trans

    No full text
    Abstract Patients with similar tumour types frequently show different responses to the same therapy. The development of new treatments would benefit, therefore, from imaging methods that allow an early assessment of treatment response in individual patients, allowing rapid selection of the most effective treatment. We have been using 13 C MRSI (magnetic resonance spectroscopic imaging) of tumour cell metabolism, using hyperpolarized 13 C-labelled cellular metabolites, to detect treatment response. Nuclear spin hyperpolarization can increase sensitivity in the magnetic resonance experiment &gt;10 000 times, allowing us to image labelled cell substrates in vivo and their subsequent metabolism. We showed that exchange of hyperpolarized 13 C label between lactate and pyruvate, catalysed by lactate dehydrogenase, was decreased in treated tumours undergoing drug-induced cell death, and that tissue pH could be imaged from the ratio of the signal intensities of hyperpolarized H 13 CO 3 − and 13 CO 2 following intravenous injection of hyperpolarized H 13 CO 3 . Tumour cell glutaminase activity, a potential measure of cell proliferation, can be determined using hyperpolarized [5-13 C]glutamine, and treatment-induced tumour cell necrosis can be imaged in vivo from measurements of the conversion of hyperpolarized [1,4-13 C 2 ]fumarate into malate. Since these substrates are endogenous and, in some cases, have already been safely infused into patients, these techniques have the potential to translate to the clinic
    corecore