10 research outputs found

    EVALUATION AND RESPONSE TO EhVIRONMEl\TAL CHANGE

    Get PDF
    iii ACKNOWLEDGEMENT

    Applications of Coulomb crystals in cold chemistry

    No full text
    This thesis describes the study of a range of ion-molecule reactions at very low collision energies using a newly developed experimental technique which involves the reaction of velocity-selected beams of translationally cold neutral molecules with very low kinetic energy ion ensembles. These studies have been enabled by the construction of a new apparatus for trapping and laser-cooling gas phase atomic ions (40Caâș). The laser-cooling process results in the formation of ordered, low kinetic energy, lattice-like ion structures, also known as "Coulomb crystals". The properties of single and multicomponent Coulomb crystals (which may also involve molecular ions), and their manipulation via modulation of the applied fields, are explored experimentally and with the use of molecular dynamics simulations. Variations in the laser-cooling parameters are shown to result in different steady-state populations of the electronic states of 40Caâș involved with the laser cooling cycle, and these are modelled within an appropriate theoretical framework. The imaging of 40Caâș fluorescence as a function of time allows the study of various ion-molecule reactions at collision energies around 300 K, with single ion sensitivity. These reaction studies are extended to low-temperature (collision energies close to 1 K), by combination of the ion trap apparatus with a bent quadrupole guide velocity-selector. Ion-molecule collision energies are shown to be variable over a short range through a change in the quadrupole guide voltage, or the ion trapping parameters; the effect of these modulations on the rate constant is explored for Caâș + CH₃F. Bimolecular rate constants for the reactions of 40Caâș with CH₃F, CH₂F₂ and CH₃Cl have been determined for a range of 40Caâș state populations, allowing resolution of the global rate contributions from the ground and combined excited states. These results are analysed in the context of capture theories and ab initio electronic structure calculations. In each case, suppression of the ground state rate constant is explained by the presence of either a submerged or real barrier on the ground state potential surface. Rates of reaction from the combined excited states are generally found to be in line with capture theories, and in some cases variation is found between the high and low collision energy regimes. Molecular product ions generated in these experiments have been shown to be sympathetically-cooled into the crystal structure, and subsequently identified through resonance-excitation mass spectrometry. Molecular ions were also produced by multiphoton laser ionisation of a thermal background gas of OCS molecules. An ion-molecule reaction involving a molecular ion, that of charge transfer between OCSâș and ND₃, has been studied at a collision energy near 1 K for the first time using sympathetically-cooled OCSâș and velocity-selected ND₃. These experiments illustrate the generality of the techniques described herein, and should lead to many possibilities for future studies.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Chemical applications of laser- and sympathetically-cooled ions in ion traps

    No full text
    Ensembles of cold atomic and molecular ions in ion traps prepared at millikelvin temperatures by laser and sympathetic cooling have recently found considerable interest in both physics and chemistry. At very low temperatures the ions form ordered structures in the trap also known as “Coulomb crystals”. Ion Coulomb crystals exhibit a range of intriguing properties which render them attractive systems for novel experiments in chemical dynamics, ultrahigh-resolution spectroscopy and quantum-information processing. In this article we review the methods used to prepare atomic and molecular ion Coulomb crystals and discuss some recent studies in mass spectrometry, low-temperature chemistry and precision spectroscopy to illustrate their scientific potential for chemical applications. Finally, we conclude with an outlook on outstanding challenges and prospective further developments in the field

    Ion-molecule chemistry at very low temperatures : cold chemical reactions between Coulomb-crystallized ions and velocity-selected neutral molecules

    No full text
    The recent development of a range of techniques for producing cold atoms and molecules at very low translational temperatures T >= 1 K has provided the opportunity to investigate collisional processes in a new physical regime. We have recently presented a new experimental method to study low-temperature reactive collisions between translationally cold ions and neutral molecules (S. Willitsch et al., Phys. Rev. Lett. 2008, 100, 043203). Our technique relies on the combination of a quadrupole-guide velocity selector for the generation of translationally cold neutral molecules with a facility to produce ordered structures of cold ions (Coulomb crystals) by laser cooling in a linear quadrupole ion trap. The strong localisation of the ions in the trap in combination with the high sensitivity of laser-induced-fluorescence detection enabled us to study chemical reactions on the single-particle level, down to temperatures of T approximate to 1 K. In the current paper, we present a detailed characterisation of the scope and limitations of this method based on our study of the reaction between laser-cooled Ca+ ions and velocity-selected CH3F molecules. The properties of our cold-neutrals source and the dependence of the measured rate constant on the shape of the Coulomb crystals, trapping and laser-cooling parameters are discussed. An extension of our technique for the study of low-temperature reactions with sympathetically cooled molecular ions (translational temperature T < 10 mK) i s presented and first results on the charge-transfer reaction between OCS+ and ND3 are discussed. Finally, perspectives for further developments of our method are explored

    Design analysis and circuit topology optimization for programmable magnetic neurostimulator

    No full text
    Transcranial magnetic stimulation (TMS) is a form of non-invasive brain stimulation commonly used to modulate neural activity. Despite three decades of examination, the generation of flexible magnetic pulses is still a challenging technical question. It has been revealed that the characteristics of pulses influence the bio-physiology of neuromodulation. In this study, a second-generation programmable TMS (xTMS) equipment with advanced stimulus shaping is introduced that uses cascaded H-bridge inverters and a phase-shifted pulse-width modulation (PWM). A low-pass RC filter model is used to estimate stimulated neural behavior, which helps to design the magnetic pulse generator, according to neural dynamics. The proposed device can generate highly adjustable magnetic pulses, in terms of waveform, polarity and pattern. We present experimental measurements of different stimuli waveforms, such as monophasic, biphasic and polyphasic shapes with peak coil current and the delivered energy of up to 6 kA and 250 J, respectively. The modular and scalable design idea presented here is a potential solution for generating arbitrary and highly customizable magnetic pulses and transferring repetitive paradigms
    corecore