38 research outputs found

    Modelling habitat suitability for occurrence of human tick-borne encephalitis (TBE) cases in Finland

    Get PDF
    The numbers of reported human tick-borne encephalitis (TBE) cases in Europe have increased in several endemic regions (including Finland) in recent decades, indicative of an increasing threat to public health. As such, it is important to identify the regions at risk and the most influential factors associated with TBE distributions, particularly in understudied regions. This study aimed to identify the risk areas of TBE transmission in two different datasets based on human TBE disease cases from 2007 to 2011 (n = 86) and 2012-2017 (n = 244). We also examined which factors best explain the presence of human TBE cases. We used ensemble modelling to determine the relationship of TBE occurrence with environmental, ecological, and anthropogenic factors in Finland. Geospatial data including these variables were acquired from several open data sources and satellite and aerial imagery and, were processed in GIS software. Biomod2, an ensemble platform designed for species dis-tribution modelling, was used to generate ensemble models in R. The proportion of built-up areas, field, forest, and snow-covered land in November, people working in the primary sector, human population density, mean precipitation in April and July, and densities of European hares, white-tailed deer, and raccoon dogs best es-timated distribution of human TBE disease cases in the two datasets. Random forest and generalized boosted regression models performed with a very good to excellent predictive power (ROC = 0.89-0.96) in both time periods. Based on the predictive maps, high-risk areas for TBE transmission were located in the coastal regions in Southern and Western Finland (including the angstrom land Islands), several municipalities in Central and Eastern Finland, and coastal municipalities in Southern Lapland. To explore potential changes in TBE distributions in future climate, we used bioclimatic factors with current and future climate forecast data to reveal possible future hotspot areas. Based on the future forecasts, a slightly wider geographical extent of TBE risk was introduced in the angstrom land Islands and Southern, Western and Northern Finland, even though the risk itself was not increased. Our results are the first steps towards TBE-risk area mapping in current and future climate in Finland.Peer reviewe

    A Highly Sensitive and Specific SARS-CoV-2 Spike- and Nucleoprotein-Based Fluorescent Multiplex Immunoassay (FMIA) to Measure IgG, IgA, and IgM Class Antibodies

    Get PDF
    Validation and standardization of accurate serological assays are crucial for the surveillance of the coronavirus disease 2019 (COVID-19) pandemic and population immunity. We describe the analytical and clinical performance of an in-house fluorescent multiplex immunoassay (FMIA) for simultaneous quantification of antibodies against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleoprotein and spike glycoprotein. Furthermore, we calibrated IgG-FMIA against World Health Organization (WHO) International Standard and compared FMIA results to an in-house enzyme immunoassay (EIA) and a microneutralization test (MNT). We also compared the MNT results of two laboratories. IgG-FMIA displayed 100% specificity and sensitivity for samples collected 13 to 150 days post-onset of symptoms (DPO). For IgA- and IgM-FMIA, 100% specificity and sensitivity were obtained for a shorter time window (13 to 36 and 13 to 28 DPO for IgA- and IgM-FMIA, respectively). FMIA and EIA results displayed moderate to strong correlation, but FMIA was overall more specific and sensitive. IgG-FMIA identified 100% of samples with neutralizing antibodies (NAbs). Anti-spike IgG concentrations correlated strongly (r = 0.77 to 0.84, P < 2.2 x 10(-16)) with NAb titers, and the two laboratories' NAb titers displayed a very strong correlation (r = 0.95, P< 2.2 x 10(-16)). Our results indicate good correlation and concordance of antibody concentrations measured with different types of in-house SARS-CoV-2 antibody assays. Calibration against the WHO international standard did not, however, improve the comparability of FMIA and EIA results. IMPORTANCE SARS-CoV-2 serological assays with excellent clinical performance are essential for reliable estimation of the persistence of immunity after infection or vaccination. In this paper we present a thoroughly validated SARS-CoV-2 serological assay with excellent clinical performance and good comparability to neutralizing antibody titers. Neutralization tests are still considered the gold standard for SARS-CoV-2 serological assays, but our assay can identify samples with neutralizing antibodies with 100% sensitivity and 96% specificity without the need for laborious and slow biosafety level 3 (BSL-3) facility-requiring analyses.Peer reviewe

    Impaired immunity and high attack rates caused by SARS-CoV-2 variants among vaccinated long-term care facility residents

    Get PDF
    Introduction: Long-term care facilities (LTCF) residents are at high risk for severe coronavirus disease 2019 (COVID-19), and therefore, COVID-19 vaccinations were prioritized for residents and personnel in Finland at the beginning of 2021. Methods: We investigated COVID-19 outbreaks in two LTCFs, where residents were once or twice vaccinated. After the outbreaks we measured immunoglobulin G (IgG) antibodies to severe acute respiratory syndrome coronavirus 2 spike glycoprotein, neutralizing antibody (NAb) titers, and cell-mediated immunity markers from residents and healthcare workers (HCWs). Results: In LTFC-1, the outbreak was caused by an Alpha variant (B.1.1.7) and the attack rate (AR) among once vaccinated residents was 23%. In LTCF-2 the outbreak was caused by a Beta variant (B.1.351). Its AR was 47% although all residents had received their second dose 1 month before the outbreak. We observed that vaccination had induced lower IgG concentrations, NAb titers and cell-mediated immune responses in residents compared to HCWs. Only 1/8 residents had NAb to the Beta variant after two vaccine doses. Conclusions: The vaccinated elderly remain susceptible to breakthrough infections caused by Alpha and Beta variants. The weaker vaccine response in the elderly needs to be addressed in vaccination protocols, while new variants capable of evading vaccine-induced immunity continue to emerge.Peer reviewe

    Sindbis virus outbreak and evidence for geographical expansion in Finland, 2021

    Get PDF
    Sindbis virus (SINV) caused a large outbreak in Finland in 2021 with 566 laboratory-confirmed human cases and a notable geographical expansion. Compared with the last large outbreak in 2002, incidence was higher in several hospital districts but lower in traditionally endemic locations in eastern parts of the country. A high incidence is also expected in 2022. Awareness of SINV should be raised in Finland to increase recognition of the disease and prevent transmission through the promotion of control measures

    Outbreak of invasive pneumococcal disease among shipyard workers, Turku, Finland, May to November 2019

    Get PDF
    We report an outbreak of invasive pneumococcal disease and pneumococcal pneumonia among shipyard workers, in Turku, Southwest Finland. In total, 31 confirmed and six probable cases were identified between 3 May and 28 November 2019. Streptococcus pneumoniae serotypes 12F, 4 and 8 were isolated from blood cultures of 25 cases. Occupational hygiene measures and vaccination of ca 4,000 workers are underway to control the outbreak at the shipyard.</p
    corecore