5 research outputs found

    Transcriptome profiling during a natural host-parasite interaction

    Get PDF
    BACKGROUND: Infection outcome in some coevolving host-pathogens is characterised by host-pathogen genetic interactions, where particular host genotypes are susceptible only to a subset of pathogen genotypes. To identify candidate genes responsible for the infection status of the host, we exposed a Daphnia magna host genotype to two bacterial strains of Pasteuria ramosa, one of which results in infection, while the other does not. At three time points (four, eight and 12 h) post pathogen exposure, we sequenced the complete transcriptome of the hosts using RNA-Seq (Illumina). RESULTS: We observed a rapid and transient response to pathogen treatment. Specifically, at the four-hour time point, eight genes were differentially expressed. At the eight-hour time point, a single gene was differentially expressed in the resistant combination only, and no genes were differentially expressed at the 12-h time point. CONCLUSIONS: We found that pathogen-associated transcriptional activity is greatest soon after exposure. Genome-wide resistant combinations were more likely to show upregulation of genes, while susceptible combinations were more likely to be downregulated, relative to controls. Our results also provide several novel candidate genes that may play a pivotal role in determining infection outcomes. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-015-1838-0) contains supplementary material, which is available to authorized users

    Estimation of population allele frequencies from next-generation sequencing data: pool-versus individual-based genotyping.

    No full text
    International audienceMolecular markers produced by next-generation sequencing (NGS) technologies are revolutionizing genetic research. However, the costs of analysing large numbers of individual genomes remain prohibitive for most population genetics studies. Here, we present results based on mathematical derivations showing that, under many realistic experimental designs, NGS of DNA pools from diploid individuals allows to estimate the allele frequencies at single nucleotide polymorphisms (SNPs) with at least the same accuracy as individual-based analyses, for considerably lower library construction and sequencing efforts. These findings remain true when taking into account the possibility of substantially unequal contributions of each individual to the final pool of sequence reads. We propose the intuitive notion of effective pool size to account for unequal pooling and derive a Bayesian hierarchical model to estimate this parameter directly from the data. We provide a user-friendly application assessing the accuracy of allele frequency estimation from both pool- and individual-based NGS population data under various sampling, sequencing depth and experimental error designs. We illustrate our findings with theoretical examples and real data sets corresponding to SNP loci obtained using restriction site-associated DNA (RAD) sequencing in pool- and individual-based experiments carried out on the same population of the pine processionary moth (Thaumetopoea pityocampa). NGS of DNA pools might not be optimal for all types of studies but provides a cost-effective approach for estimating allele frequencies for very large numbers of SNPs. It thus allows comparison of genome-wide patterns of genetic variation for large numbers of individuals in multiple populations

    SNPs validated with different MAC (2 or 3) and a sequencing depth of 10 or 20X

    No full text
    This archive contains three types of files with extensions '.n', '.y' and '.alleles'. '.n' files list for each library the number of reads associated at each SNP position. '.y' files list the number of times a SNP is detected. '.alleles' files give the name of the contig displaying a given SNP, then the position of the SNP from the restriction site, the total number of reads for the whole dataset, the count of the minor allele, the count of the major allele, and the two possible nucleotides encountered at this positio
    corecore