6,193 research outputs found

    Is There a Negative Thermal Expansion in Supported Metal Nanoparticles? An In-Situ X-ray Absorption Study Coupled with Neural Network Analysis

    No full text
    Interactions with their support, adsorbates and unique structural motifs are responsible for the many intriguing properties and potential applications of supported metal nanoparticles (NPs). At the same time, they complicate the interpretation of experimental data. In fact, the methods and approaches that work well for the ex situ analysis of bulk materials may be inaccurate or introduce artifacts in the in situ analysis of nanomaterials. Here we revisit the controversial topic of negative thermal expansion and anomalies in the Debye temperature reported for oxide-supported metal NPs. In situ X-ray absorption experimental data collected for Pt NPs in ultrahigh vacuum and an advanced data analysis approach based on an artificial neural network demonstrate that Pt NPs do not exhibit intrinsic negative thermal expansion. Similarly as for bulk materials, in the absence of adsorbates the bond lengths in metal NPs increase with temperature. The previously reported anomalies in particle size-dependent Debye temperatures can also be linked to the artifacts in the interpretation of conventional X-ray absorption data of disordered materials such as NPs

    Conformations of dendrimers in dilute solution

    Full text link
    Conformations of isolated homo- dendrimers of G=1-7 generations with D=1-6 spacers have been studied in the good and poor solvents, as well as across the coil-to-globule transition, by means of a version of the Gaussian self-consistent (GSC) method and Monte Carlo (MC) simulation in continuous space based on the same coarse-grained model. The latter includes harmonic springs between connected monomers and the pair-wise Lennard-Jones potential with a hard core repulsion. The scaling law for the dendrimer size, the degrees of bond stretching and steric congestion, as well as the radial density, static structure factor, and asphericity have been analysed. It is also confirmed that while smaller dendrimers have a dense core, larger ones develop a hollow domain at some separation from the centre.Comment: RevTeX, 14 pages, 19 PS figures, Accepted for publication in J. Chem. Phy

    Modeling the buckling and delamination of thin films

    Full text link
    I study numerically the problem of delamination of a thin film elastically attached to a rigid substrate. A nominally flat elastic thin film is modeled using a two-dimensional triangular mesh. Both compression and bending rigidities are included to simulate compression and bending of the film. The film can buckle (i.e., abandon its flat configuration) when enough compressive strain is applied. The possible buckled configurations of a piece of film with stripe geometry are investigated as a function of the compressive strain. It is found that the stable configuration depends strongly on the applied strain and the Poisson ratio of the film. Next, the film is considered to be attached to a rigid substrate by springs that can break when the detaching force exceeds a threshold value, producing the partial delamination of the film. Delamination is induced by a mismatch of the relaxed configurations of film and substrate. The morphology of the delaminated film can be followed and compared with available experimental results as a function of model parameters. `Telephone-cord', polygonal, and `brain-like' patterns qualitatively similar to experimentally observed configurations are obtained in different parameter regions. The main control parameters that select the different patterns are the mismatch between film and substrate and the degree of in-plane relaxation within the unbuckled regions.Comment: 8 pages, 10 figure

    Fracture mechanics approach to design analysis of notches, steps and internal cut-outs in planar components

    Get PDF
    A new approach to the assessment and optimization of geometric stress-concentrating features is proposed on the basis of the correspondence between sharp crack or corner stressfield intensity factors and conventional elastic stress concentration factors (SCFs) for radiused transitions. This approach complements the application of finite element analysis (FEA) and the use of standard SCF data from the literature. The method makes it possible to develop closed-form solutions for SCFs in cases where corresponding solutions for the sharp crack geometries exist. This is helpful in the context of design optimization. The analytical basis of the correspondence is shown, together with the limits on applicability where stress-free boundaries near the stress concentrating feature are present or adjacent features interact. Examples are given which compare parametric results derived from FEA with closed-form solutions based on the proposed method. New information is given on the stress state at a 90° corner or width step, where the magnitude of the stress field intensity is related to that of the corresponding crack geometry. This correspondence enables the user to extend further the application of crack-tip stress-field intensity information to square-cornered steps, external U-grooves, and internal cut-outs

    Monte Carlo simulations of infinitely dilute solutions of amphiphilic diblock star copolymers

    Full text link
    Single-chain Monte Carlo simulations of amphiphilic diblock star copolymers were carried out in continuous space using implicit solvents. Two distinct architectures were studied: stars with the hydrophobic blocks attached to the core, and stars with the polar blocks attached to the core, with all arms being of equal length. The ratio of the lengths of the hydrophobic block to the length of the polar block was varied from 0 to 1. Stars with 3, 6, 9 or 12 arms, each of length 10, 15, 25, 50, 75 and 100 Kuhn segments were analysed. Four distinct types of conformations were observed for these systems. These, apart from studying the snapshots from the simulations, have been quantitatively characterised in terms of the mean-squared radii of gyration, mean-squared distances of monomers from the centre-of-mass, asphericity indices, static scattering form factors in the Kratky representation as well as the intra-chain monomer-monomer radial distribution functions.Comment: 12 pages, 11 ps figures. Accepted for publication in J. Chem. Phy

    Conformational transitions of heteropolymers in dilute solutions

    Full text link
    In this paper we extend the Gaussian self-consistent method to permit study of the equilibrium and kinetics of conformational transitions for heteropolymers with any given primary sequence. The kinetic equations earlier derived by us are transformed to a form containing only the mean squared distances between pairs of monomers. These equations are further expressed in terms of instantaneous gradients of the variational free energy. The method allowed us to study exhaustively the stability and conformational structure of some periodic and random aperiodic sequences. A typical phase diagram of a fairly long amphiphilic heteropolymer chain is found to contain phases of the extended coil, the homogeneous globule, the micro-phase separated globule, and a large number of frustrated states, which result in conformational phases of the random coil and the frozen globule. We have also found that for a certain class of sequences the frustrated phases are suppressed. The kinetics of folding from the extended coil to the globule proceeds through non-equilibrium states possessing locally compacted, but partially misfolded and frustrated, structure. This results in a rather complicated multistep kinetic process typical of glassy systems.Comment: 15 pages, RevTeX, 20 ps figures, accepted for publication in Phys. Rev.

    Capillary force-induced structural instability in liquid infiltrated elastic circular tubes

    Full text link
    The capillary-induced structural instability of an elastic circular tube partially filled by a liquid is studied by combining theoretical analysis and molecular dynamics simulations. The analysis shows that, associated with the instability, there is a well-defined length scale (elasto-capillary length), which exhibits a scaling relationship with the characteristic length of the tube, regardless of the interaction details. We validate this scaling relationship for a carbon nanotube partially filled by liquid iron. The capillary-induced structural transformation could have potential applications for nano-devices

    The partition function versus boundary conditions and confinement in the Yang-Mills theory

    Get PDF
    We analyse dependence of the partition function on the boundary condition for the longitudinal component of the electric field strength in gauge field theories. In a physical gauge the Gauss law constraint may be resolved explicitly expressing this component via an integral of the physical transversal variables. In particular, we study quantum electrodynamics with an external charge and SU(2) gluodynamics. We find that only a charge distribution slowly decreasing at spatial infinity can produce a nontrivial dependence in the Abelian theory. However, in gluodynamics for temperatures below some critical value the partition function acquires a delta-function like dependence on the boundary condition, which leads to colour confinement.Comment: 14 pages, RevTeX, submitted to Phys. Rev.

    Pressure coefficients of Raman modes of carbon nanotubes resolved by chirality: Environmental effect on graphene sheet

    Get PDF
    Studies of the mechanical properties of single-walled carbon nanotubes are hindered by the availability only of ensembles of tubes with a range of diameters. Tunable Raman excitation spectroscopy picks out identifiable tubes. Under high pressure, the radial breathing mode shows a strong environmental effect shown here to be largely independent of the nature of the environment . For the G-mode, the pressure coefficient varies with diameter consistent with the thick-wall tube model. However, results show an unexpectedly strong environmental effect on the pressure coefficients. Reappraisal of data for graphene and graphite gives the G-mode Grueuneisen parameter gamma = 1.34 and the shear deformation parameter beta = 1.34.Comment: Submitted to Physical Review

    Is it possible to assign physical meaning to field theory with higher derivatives?

    Full text link
    To overcome the difficulties with the energy indefiniteness in field theories with higher derivatives, it is supposed to use the mechanical analogy, the Timoshenko theory of the transverse flexural vibrations of beams or rods well known in mechanical engineering. It enables one to introduce the notion of a "mechanical" energy in such field models that is wittingly positive definite. This approach can be applied at least to the higher derivative models which effectively describe the extended localized solutions in usual first order field theories (vortex solutions in Higgs models and so on). Any problems with a negative norm ghost states and unitarity violation do not arise here.Comment: 16 pp, LaTeX, JINR E2-93-19
    corecore