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Fracture Mechanics approach to design analysis

of notches, steps and internal cut-outs in planar components

T. G. F. GRAY,  J. WOOD 

Department of Mechanical Engineering

University of Strathclyde

Glasgow G1 1XJ

Abstract

A new approach to the assessment and optimisation of geometric stress-concentrating features 

is proposed, based on the correspondence between sharp crack or corner stress-field-intensity 

factors and conventional elastic stress concentration factors for radiused transitions.  This ap-

proach complements the application of finite element analysis and the use of standard SCF data 

from the literature. The method makes it possible to develop closed form solutions for stress 

concentration factors, in cases where corresponding solutions for the sharp crack geometries

exist.  This is helpful in the context of design optimisation. The analytical basis of the corre-

spondence is shown, together with the limits on applicability where stress-free boundaries 

nearby the stress concentrating feature are present or adjacent features interact.  Examples are 

given which compare parametric results derived from finite element analysis with closed form 

solutions based on the proposed method.  New information is given on the stress state at a 90°

corner or width step, where the magnitude of the stress-field-intensity is related to that of the 

corresponding crack geometry.  This correspondence enables the user to further extend the ap-
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plication of crack-tip stress-field-intensity information to square-cornered steps, external U-

grooves and internal cut-outs.

Key Words:  stress concentration factor, notch interaction, notch shielding, slots, steps, U-

grooves. 

Introduction

Stress concentration effects at notches, steps and cut-outs in engineering components are re-

sponsible for a high proportion of fatigue failures.  However, such features cannot always be 

avoided and the best that can be done normally is to reduce the stress concentration effects by 

optimising the geometry of the offending details.  At present, there are two basic approaches to 

initial design, assessment or improvement of stress concentrating details.  The first is to make 

use of published stress concentration factors (SCFs) for standard notch shapes for example, as 

compiled by the Engineering Sciences Data Unit [1]. The second option is to make use of finite-

element analysis (FEA) facilities, which are now widely available to practising engineers.  In the 

latter case, it is also possible to apply optimisation software, which will alter the geometry of the

detail in prescribed ways and thereby arrive at an improved design solution.

There are two common practical weaknesses in the use of published stress concentration fac-

tors - apart from the usual problem of finding cases in the literature that match the design situa-

tion under consideration.  The first is that much of the data are based on photoelastic determi-

nations and do not as a consequence cover very sharp concentrations, i.e. with small radii.  

Various references to photoelastic determinations, going back to Frocht’s early work [2], note 

that experimental errors may be large if the notch radii are very small in comparison with the 

specimen thickness. The second difficulty arises typically where the component in question fea-
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tures several contiguous stress concentrating details that interact, sometimes in a manner which 

reduces the SCF and sometimes not.

The finite-element approach is more versatile in treating stress concentration problems, but 

gives less insight, for example, in terms of distinguishing the interacting effects of notch position 

and transition radius.  Local mesh refinement will be required at each detail on a component be-

ing analysed, leading to extensive computational requirements, particularly in a 3D analysis, and 

multiple runs in a parametric design study (although this is becoming a less significant problem 

as computer power increases).  In the case of small radii, it may not always be clear that the 

mesh has been refined enough and this may require further exploration or sub-structuring of the 

model.  The finite element results presented in this paper were produced using an alternative 

approach based on so-called “adaptive p-element” technology, where the polynomial shape 

function along each edge of the elements is varied until a specified convergence is achieved 

(detailed aspects of this application are given in the Appendix).  FEA of one kind or another can 

therefore provide accurate stress concentration factors for non-standard geometries and load-

ings.  However, single determinations of SCF do not readily inform the designer how to optimise 

the geometry of the detail.

A third approach proposed here, therefore, is to analyse stress concentrating features through 

separate modelling idealisations.  In the first step, all radiused or smoothed transition features 

are treated as sharp cracks or square corners with zero radius.  They can then be analysed and 

characterised in terms of crack-tip stress-field intensity factors (SIFs) or equivalent parameters. 

The SIF can be determined analytically, by drawing on a large database of published crack 

stress-intensity factors, together with the superposition and 'compounding' methods available, 

as given by Murakami [3] and Rooke et al [4].   Alternatively, the SIF may be determined nu-

merically through FEA, in which case the modelling requirement is much reduced relative to the 
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radiused notch model.  The true transition shape does not need to be described accurately and 

special crack-tip singularity elements or the approach described in the appendix may be used to 

deal with the problem of mesh refinement. 

Having established the basic influence of the size and spacing of the cracks or corners in terms 

of stress intensity factors, the effect of transition shape (eg corner radius) can then be found 

through analytical functions linking crack stress-intensity factors and stress concentration fac-

tors for the corresponding rounded notches.  The analytical underpinning inherent in this ap-

proach is also beneficial in terms of providing a parallel form of analysis, which serves to vali-

date the computational result.  Detailed finite-element analysis may then be applied to the cho-

sen geometry as a final check on the stress concentration factor.

Analytical correspondence between SIF and SCF (isolated SCs)

In the case of symmetrical internal or external notches, the analytical correspondence between 

sharp cracks and rounded notches has been expressed [5] in terms of a generalisation of the 

simple formula for the SCF at an elliptical hole, subject to a uniaxial stress  normal to the ap-

propriate line of symmetry.   The stress concentration factor, scfK , is given by:

)1....(..............................2+1==
∞

max

or
aY

σ
σ

Kscf

where Y is the well-known crack configuration factor, a is the crack/notch depth and ro is the 

instantaneous radius of the notch at the end of the line of symmetry. 

This generalisation of the elliptical hole solution is supported by the ‘blunt crack’ theory of Crea-

ger [6] which was formulated in terms of the sharp crack SIFs associated with the three Irwin 
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loading Modes.  Hyde and Yaghi [7] have also used Creager’s equations to determine SCFs for 

narrow rectangular notches with semi-circular ends.  Dini and Hills [8] considered the corre-

spondence between the stress fields at notches and corresponding crack cases, in order to de-

termine the extent to which the radius perturbs the singular stress field of the crack solution. 

Tada et al also noted that in the case of the infinite plate, (i.e. where Y =1) equation (1) is “actu-

ally not limited to slender ellipses” [9].

However, equation (1) can carry the crack/notch analogy further than previous applications, by 

allowing separation of the configuration factor Y from the other terms in the stress intensity fac-

tor formulation.  The claim inherent in equation (1) is that the Y factor can be used to generalise

the elliptical-hole SCF expression in terms of different boundary configurations and loadings.  

The further inference is that equation (1) can also correctly describe large-radius, wide notches 

of depth a.  In other words, the elliptical hole solution for the 'shallow' side of the hole can also 

be employed.  This formulation, confirming Tada’s view stated earlier, is not therefore confined 

to narrow ‘crack-like’ notches, where the correspondence between the crack and notch solutions 

would not be remarkable.

A variation of this principle in terms of the Neuber hyperbolic [10] notch solution was also sug-

gested in reference [5], to cover the case of deep, opposed notches of relatively large radius, 

where the 'neck' between notches is small.  In that case, the corresponding SCF for tension 

loading (again, in terms of the gross stress ) is given by:

)2.........(....................1

)/()1/(

)/()1/(2
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
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where d is the net section width between the notches and Yhyp is an equivalent configuration fac-

tor for the hyperbolic solution.  This is determined by equating the theoretical stress concentra-

tion factors formulated in terms of the elliptical hole and hyperbolic notch solutions.

The reasons for this simple correspondence between notch and crack solutions in finite geome-

tries are discussed in greater detail in reference [5].  However the basic point is that, through a 

consequence of Saint Venant’s Principle (and subject to certain restrictions) the configuration 

factor for a crack geometry in a given case is likely to be very similar numerically to the equiva-

lent configuration factor for an analogous notch.  Detailed examination in reference [5] of finite-

element results for a wide variety of large and small-radius, shallow and deep notches con-

firmed the applicability and scope of equations (1) and (2).  The study included tension and 

bending cases with SCFs varying from 1.2 to 13 (net stress basis).

Equation (1) also applies in the case of notches which are asymmetric with respect to the load-

ing axis, as exemplified by an external step, although the stress intensity factor concept then 

needs to be interpreted differently.  Asymmetry leads to mixed-Mode stress distribution around 

the sharp corner, as shown in the left-hand detail in figure 1 and requires a different basis for 

characterisation, distinct from a single-Mode stress-intensity factor.  The problem can be treated 

in terms of a ‘sharp-corner’ stress-intensity factor [11] derived from the sharp-corner ‘energy re-

lease rate’, calculated numerically as a variation of energy with step depth.  (This parameter has 

no physical significance in fracture terms, it merely provides a characterising framework for the 

corner stress distribution and facilitates extension to the stress concentration factor at a rounded 

corner.)

Comparing symmetric and asymmetric notches with the same depth and transition radius, as in 

figure 1, the main effect of asymmetry is to reduce the SCF considerably relative to the corre-
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sponding symmetric case.  An empirical adjustment to equation (1) to achieve this is given in 

reference [11] and the sharp corner problem will be discussed further in section 4.

Interaction of stress concentrations

1.1 Comparison of stress distributions (notches v cracks)

Further questions concerning the correspondence of crack and notch solutions arise when the 

notches are not 'isolated', but are placed near to other notches or to free boundaries.  The prin-

cipal differences between crack stress distributions and corresponding notch patterns lie in the 

extent of the region that experiences a raised stress level.  Figure 2 has been constructed using 

the Inglis complex variable equations for the stresses round an elliptical hole subject to uniaxial 

load [12].  Three cases are considered - a circular hole, a 2/1 elliptical hole and a crack (actually 

a 1000/1 ellipse).

Figures 2 (a) and (b) show that, in all three hole geometries, the stresses normal and transverse 

to the major axis of the ellipse reduce to almost identical levels by two to three half-crack-

lengths from the notch end.  When the applied load is parallel to the major axis, the transverse 

stresses converge even more rapidly (figure 2 (c)).  However the convergence of stress levels is 

more gradual for stresses in the same direction as the load, requiring an overall distance nearer 

six half-crack lengths - as in figure 2 (d). 

Several useful deductions can be made from this comparison.  Firstly, the effect on SCF of plac-

ing a free edge parallel to the loading direction should be very similar for cracks and notches, 

provided that this boundary is at least three half-crack-lengths from the end of the notch. How-

ever, this statement needs to be qualified in at least two ways:

i. The argument is qualified for holes or notches that have a larger length-to-width ratio than 

the circular case, although such notches have small SCFs in any event;
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ii. Following St Venant’s Principle, a small discrepancy between the crack and hole solutions, 

with respect to the differences in stress at a boundary, may nevertheless have a strong in-

fluence if the error extends over a large length in comparison to the distance to the point 

where the SCF is to be determined.   The famous error in Griffith’s 1921 paper on energy 

release rate [13] provides a classic example of this.  He used Inglis’ elastic solutions to cal-

culate the boundary work at the perimeter of a large plate containing a crack-like elliptical 

hole and compared this to the energy in an uncracked plate with uniform boundary stress.  

The Inglis stress values differ from the assumed uniform stress only by an infinitesimal 

amount and are statically equivalent, but the fact that the error occurs over a perimeter 

length which is always greater than the distance to the crack means that the error can never 

be negligible.  

In contrast, if the free boundary is inserted at a distance less than about one hole radius from 

the notch end, especially in the case of a large-radius notch, the region at elevated stress is 

much greater than it would be for a crack.  The stress concentration at such a notch will there-

fore be substantially increased (relative to the crack analogue solution embodied in equation 

(1)).  Likewise, following figure 1(d), the stress concentration effect will be increased if the 

boundary which is loaded is placed nearer than six hole radii from the edge of the hole. 

Figure 3(a) shows SCF results obtained via finite-element analysis for a single hole placed cen-

trally in a plate of width 2W.  These results cross-reference accurately with an empirical, closed-

form equation given in Roark's Formulas for Stress and Strain [14] which has its origin in photo-

elastic tests (CF Roark, ie Closed Form Roark).  The finite-element values are then compared 

with closed form SCFs (CF centre hole) derived through equation (1). The crack configuration 

factor used here was based on a simple closed formulation for a centre-crack geometry [15]
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(equation 3) which also agrees to within 1% with the most accurate of several closed forms 

given for the centre-crack geometry in reference [9].  

(3).............................)(1/1 54.084.1 )(
W
aY 

The centre-crack closed form clearly underestimates SCFs for holes larger than about 30% of 

the finite width - in line with the suggestion earlier in this section on the effect of proximity to a 

free boundary.  In the case of very large holes, the error is substantial, as the stress pattern in 

the narrow ligament is then dominated by additional bending effects not present in a cracked 

geometry.  This circumstance violates condition (ii) above.  Fortunately, such interactions are 

more often associated with situations of lesser practical significance, where the SCF values are 

small on a net stress basis (less than 2.0). This may arise where the transition radius is large 

and the notch is deep or wide relative to the total cross section.  Such cases can sometimes be 

treated by substituting the hyperbolic notch analysis for the elliptical hole solution, as indicated 

earlier.  This substitution also deals with the limiting case when ro tends to infinity and the SCF 

must reduce to unity on a net stress basis (equation (1) does not show the correct limiting trend 

in such an extreme case).

Figure 3(b) shows finite-element results for an infinite row of holes of radius a spaced 2W apart 

transverse to the load (‘FE periodic') and compares these with a closed form estimate based on 

equation (1) and the classical solution for a transverse row of cracks ('CF periodic').  It is of in-

terest to note in passing that, although the crack configuration factor for this case is non-linear 

with respect to a/W, the overall dependence of the net-stress-based SCF on width-ratio is linear. 

The periodic crack solution is remarkably effective for holes that are large compared to the 

spacing.  This is because the adjacent boundaries in this case are other holes and not straight 

edges, and they are reasonably far apart. A similar point was made by Rooke et al [4] in the 



10

context of ‘compounding’ and the effects of different types of adjacent boundaries on the stress 

intensity at a crack. 

1.2 Stress Multiplication and Notch Shielding

A ‘stress flow’ analogy is often invoked to provide a measure of intuitive understanding of stress 

concentration effects and two extremes can be recognised in the case of multiple notches.  If 

the notches or cracks are placed in line across the load path, the stress concentration effect is 

clearly more severe than for a single notch in an infinite width (as in the example of periodic cir-

cular holes given earlier).  Also, a small-scale stress concentration, such as a small hole, situ-

ated in the highly stressed zone adjacent to a larger-scale hole may be treated conservatively 

by multiplying the respective individual SCFs.   A more accurate approach might make use of 

the configuration factor for a crack adjacent to a hole, through equation (1), and thereby take

reasonable account of the stress gradient adjacent to the large hole.

If, on the other hand, the notches are placed along the load path, one behind the other, the 

stress concentration effect is reduced somewhat for the end notches in the series and even 

more for the intermediate notches, where a measure of ‘shielding’ takes place.  These effects 

can be estimated from appropriate crack solutions, subject to the limitations given in 3.1 when 

the zones of elevated stress begin to encroach on each other or on free boundaries.  

To explore this possibility, an extended solution was generated, via FEA, for three cracks in se-

ries along the load path, as shown in Figure 4 (again, see Appendix for details).  These results 

were confirmed for 8.0/ ha by data in reference [3], where a closed form fit is given for the 

outer cracks as:

(4)................................)/(3424.0)/(5036.0)/(0031.01)/( 32 hahahahaY 
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and tabulated values are given for the inner cracks.  (The FEA values were actually generated 

for a finite-width plate ( 1.0/ Wa ) and adjusted to compare with the infinitely-wide case in ref-

erence [3] by a method which will be described later).  As the cracks are brought closer to-

gether, the configuration factors appear to reach limiting values of 0.53 and 0.73 approximately 

for the inner and outer cracks respectively.  

Figure 5 gives corresponding FEA results for stress concentrations at the inner and outer of a 

group of three circular holes placed in line in a relatively wide plate (a/W = 0.1) (note false zero 

on SCF scale).  The results are compared with the values (‘CF a,b’) derived from equation (1), 

where the main influence arises from the crack configuration factors given in figure 4 for the in-

ner and outer cracks.  Equation (4) can be applied to this case, as it is valid down to a spacing 

corresponding to 8.0/ ha  and circular holes will coalesce at 1/ ha .

The effect of the finite width, although small, was included in the determination of the closed 

form estimate in figure 5 by multiplying the result from equation (4) by the adjustment indicated 

in equation (3) for a single crack in a finite width.  The justification for multiplying these factors 

lies in an explanation based on Cartwright and Rooke’s compounding method [16],[17].  If the 

separate configuration factors for a crack near to different boundaries are given by )1(   and 

)1(  , the first stage of Cartwright and Rooke’s method, based on an alternating boundary 

stress technique, gives the compounded factor as )1( 2k  , where 2k  is a factor related 

to mutual interaction of the two disturbing boundaries.  This should be negligibly small unless 

these boundaries are near each other.  Multiplication of configuration factors, on the other hand,

gives )1(  Y  and, if   and   are small   will be an order smaller, thus ap-

proximating to the compounding approach.  This method was also applied in figure 4, where the 

FEA results were divided by the result from equation (3) to generate a comparison with the infi-

nitely-wide geometry of reference [3].
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In the case shown in figure 5, the SIF-based solution should only be accurate if the ligament be-

tween the holes is more than about six times the hole radius.  However the crack-based ap-

proximation now under-estimates the 'sheltering' effect (ie over-estimates the SCF) for more 

closely spaced holes.   This is in line with the discussion in 3.1 concerning the stress gradient 

along the axis parallel to the load.  It is also seen that the error is greater for the inner hole, 

which has a disturbing boundary on both sides, than for the end holes.  Nevertheless, bearing in 

mind the magnified ordinate scale in this diagram, the estimate of SCF is still remarkably good 

and entirely adequate for design purposes.

Figure 6 shows a similar comparison between FEA results for parallel-sided slots with semi-

circular ends (‘FE a,b’) and the corresponding SCF values generated through equation (1) (‘CF 

a,b’).  The configuration factors were derived from the previous finite-element analysis of the 

corresponding three-crack geometry shown in figure 4.  Relative to the previous circular hole 

case, the slot pitch could in practice be reduced substantially without overlap and the full range 

of the results in figure 4 is therefore needed.  The finite-width ratio (a/W) was again 0.1 and the 

slot radius was 40% of the half-crack-length.  Comparison with figure 5 shows that the closed 

form is more accurate than is the case for the circular holes.  This arises because the stress 

pattern in the ‘sheltered’ area between the slots is closer to the crack case than the case for cir-

cular holes.  The finite-element results also show that, for a given spacing, the ‘sheltering’ effect 

is greater in the case of sharp slots than for circular holes.

Square-cornered steps, U-grooves and cut-outs
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Mode I stress intensity factors at square corners may be determined in an approximate manner 

by first considering the decomposition of separate force systems applied to a classical crack in 

an infinite plate, as shown in figure 7(a).  For load case P, superposition of the two loading sys-

tems Q and R gives: aaKKK RQP   2III . As the Q and R loading systems are 

identical, RQ KK II  , and therefore aK Q 5.0I  .   (Note that this is close to the limiting con-

figuration factor for the inner crack in the 3-crack case shown in figure 4.)  

An infinitely-long cut-out or external step can then be generated by creating an internal, stress-

free block as shown in figure 7(b) to give a formulation for stress concentration as:

  )5..(................................5.0121out-cut-scf
or
aK 

(A similar idea was suggested by Noda et al in the context of stress concentration factors for 

shoulder fillets [18].)  However, by analogy with the well-known edge-crack stress intensity ad-

justment, a slight increase in stress intensity factor is implied, due to release of transverse 

stresses in the released block.  Comparison of SCFs for transverse, internal, round-end slots 

and comparable long rectangular cut-outs suggests that this increase varies little from 10% (cf 

classical edge factor increase of 12% for a semi-inifinite crack).   Hence, a combined Y configu-

ration factor for a long, sharp-cornered, internal cut-out or hole in an infinitely wide plate might 

reasonably be taken as 0.55, ie 1.1 x (1-0.5).

If the infinite geometry in figure 7(b) is then split to form two semi-infinite plates with symmetrical 

external steps, as in figure 7(c), there ought to be a further, rather smaller, release of transverse 

stresses at the cut edge.  Noda’s numerical results [18] for an infinitely long external step, based 

on a body-force analysis method, gives a combined edge factor that varies only a little from a 

value of 1.16, over a very wide range of ora / . This implies that the split to form the semi-infinite 
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plates generates a further 5% increase in stress intensity factor and therefore gives the Mode 1 

Y-factor for a sharp cornered external step in a semi-infinite geometry as 0.58.  Hence the 

stress concentration factor for the case in 7(c)  is given by:

  )6....(..............................5.0116.121stepext -scf
or
aK 

The accuracy of this equation (‘External step CF’) relative to Noda’s results, is shown in figure 8, 

which covers a wide range of external steps, from vanishingly shallow to relatively sharp.

General comparison with other published SCF data is complicated by the mixed-Mode nature of 

the stress distribution and the fact that the maximum stress location at a corner does not coin-

cide with the tangent between the radius and the straight boundary, as shown in figure 1.  The 

above result is of the same order as the mixed-Mode factor of 0.66 found rather less accurately 

in [5] by extrapolation of finite-element results to zero radius, but it is of interest to investigate 

this point more closely through FEA.  

Figure 9 shows the corresponding crack and corner stress-field-intensity magnitudes in a polar 

coordinate system centred on the crack tip or analogous sharp corner, at a point very close to 

the origin where singular stress patterns dominate.  This formulation is based on the circumfer-

ential stress and the singular regions were identified by plotting stress versus radius on loga-

rithmic scales. The maximum stress at the corner occurs at an angle of -30° (see figure 1) and 

has a magnitude of 63% of that generated by the corresponding crack geometry.  The strength 

of the singularity varies with angle in the corner case, but at the angle giving maximum stress, it 

shares, with the crack geometry, the same inverse square root dependence on radius.  From all 

these considerations, it is reasonable to estimate the reduction effect of asymmetry in the two-

dimensional corner case as 60% approximately.
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In the case of internal cut-outs or external steps of finite length (see right-hand sketch in figure 

10) an estimate of the crack face stress to be released, as in figure 8(b), can be made from so-

lutions [3] [9] for a pair of cracks spaced at a distance 2h along the load axis. These independ-

ent solutions, referenced by Murakami and Tada respectively, agree reasonably in the case of 

the Mode 1 factor for h/a > 0.1.  However, they diverge for more closely spaced cracks.  A finite-

element cross-check suggests that mixed-Mode effects dominate in the range where the parallel 

ligament between the cracks tends to vanishing thickness.   Hence, as a limit of h/a > 0.1 is 

probably well within the range of practical interest, it will be accepted here. 

These comparisons suggest that the closed form given by Murakami gives a good estimate of 

effective configuration factor viz;

)7........().........)1(1(293.01 4
/ ssY ah 

where 





 

a

h
s 1/1

Putting this together with the superposition algorithm above and equation (1) leads to closed 

form stress concentration factors as follows:

  )8........(..............................5.0101.11.121cutout-scf a
r
aYK
o

h/a

  )8....(..............................5.0101.116.121Ugroove-scf b
r
aYK
o

h/a

for finite length internal rectangular cut-outs and external U-shaped notches respectively.  (The 

factor 1.01 has been included to allow comparison with the finite element determination for a 

finite-width corresponding to 1.0/ Wa .)
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Comparison is shown in figure 11 of closed form equation 8(a) (Cutout CF) with finite-element 

results for rectangular holes or cut-outs with radiused corners, in a finite-width plate 

( 5.2/ ora ; 1.0/ Wa ).  Equation (8a) underestimates the SCF as the axial length of the cut-

out is reduced ( 0/ ah ) as expected.  At the point 2.0/ ah , the two notional parallel slits 

making up the cut-out merge into a single slot.  Therefore, for narrower spacing, down to the 

point 0/ ah , it is more reasonable to model the geometry as a single slit with semicircular 

ends, as shown by the legend ‘Radius CF’.

In the case of external U-grooves, equation (8b), as given, was found to give a slightly low (-3%) 

estimate of SCF in the limiting case of an infinitely-wide, external U-groove, where the finite-

element determination does not seem to converge to Noda’s results.  An edge configuration fac-

tor of 1.2 in equation (8b) has therefore been used in figure 12 (instead of 1.16) to provide im-

proved agreement with the finite-element data, but the differences are small and may simply be 

related to the definition of maximum stress locations.

Summary

The scope of a previously given analytical relationship between crack-tip stress intensity factors 

and stress concentration factors has been explored further for various two-dimensional geome-

tries subject to symmetrical loading.

Several configurations, incorporating circular holes and parallel-sided slots with semi-circular 

ends, have been examined.  The large radius relative to the 'crack length' in the cases incorpo-

rating circular holes cases implies a significant departure from a crack-like shape discontinuity.  

Despite this, the analytical relationship, based on crack configuration factors, gives usefully ac-
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curate estimates of stress concentration factors - provided that given minimum distances are 

respected between the circular holes and adjacent free boundaries.  In the case of stress con-

centrating details that have a smaller aspect ratio (dimension transverse to the load relative to 

end radius) it is deduced that the analytical equation will be effective at closer spacing.  The re-

quired minimum spacing for a given aspect ratio may be estimated from Inglis' equations, used 

to draw up a stress plot for an appropriately dimensioned elliptical hole.

Stress concentrations at corner details have also been examined to explore the effects of longi-

tudinal spacing between adjacent corners.  A new analytical formulation has been given for 90° 

radiused corners joined by a flat or parallel section.  This is based on the published configura-

tion factor for a pair of transverse cracks, placed in series along the load axis.   Provided that

minimum spacing is again respected between the adjacent faces of the cut-out or external 

notch, the formulation should be useful in the design context.

The results of the study provide support and background information for the proposed design 

strategy whereby stress concentrating details may be treated initially as mathematically sharp 

transitions (cracks or corners) for the purpose of FEA.   The analytical approach also provides 

an appropriate design framework where FEA is not available or where an independent cross-

check on the result of a finite-element analysis is required.

Conclusions

Comparison of FEA-derived stress concentration data with corresponding estimates derived 

through configuration factors for analogous crack geometries confirms the usefulness of a pre-

viously given generic equation.  The required configuration factors may be obtained from the 

published literature or generated through FEA analysis of the appropriate cracked body.
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The accuracy of the estimate for multiple notches, or notches which approach free boundaries, 

may be gauged by considering the differences between the analogous crack/notch stress fields 

and ensuring that certain minimum distances between adjacent notches or boundaries are re-

spected.

In the case of adjacent similar notches, the generic equation tends to underestimate the SCF for 

notches placed across the predominant loading axis, whereas the method tends to overestimate 

the SCF (and underestimates the ‘sheltering effect’) for notches positioned along the load axis.

An extension of the method has been given for finite-length, rectangular holes with rounded cor-

ners or corresponding external U-grooves, where the design aim may be to find an acceptable 

compromise between the corner radius and spacing of shoulders.

2. Appendix

2.1 Nomenclature

a       crack length     

d       width of ‘neck’ between deep notches

h      axial spacing of cracks or stress concentrations

r       radius coordinate from crack tip or corner

or    asymptotic radius of notch end

s       geometric parameter (see equation 7)

KI          crack-tip stress-field-intensity factor
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Kscf     stress concentration factor

W     half width of finite-width geometry

Y      configuration factor

θ      polar coordinate

  remotely applied stress

max maximum stress at a stress concentration

2.2 Application of Adaptive P-element technology

The finite element results in this paper were produced using two-dimensional plane strain ele-

ments, as implemented in the Pro-Mechanica Applied Structure system from Parametric Tech-

nology Inc.  Adaptive p-element technology allows the user to specify a percentage conver-

gence for the analysis and, in the analyses reported here, convergence was based upon dis-

placements, strain energy and a global root-mean-square stress measure.  Convergence levels 

achieved were typically much better than 1%.

For the analyses of cracked configurations, linear elastic stress intensity factors were derived by 

fitting stress distributions calculated in the vicinity of the crack tip to the Mode 1 Westergaard 

stress equations. The stress fitting was performed along a user-specified line segment, as 

shown in figure 13. It should be noted that the polynomial shape function along each edge of 

the p-elements can be as high as 9th order.  Mechanica uses a 3-term fit for the Westergaard 
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equations, which is valid for moderate distances from the crack tip, while smoothing out any 

“noise” in the stress data.

For all analyses, the fan of elements around the crack tip was set to a radius of 1/20th crack 

length and the next larger fan was set to 1/4 crack length. The latter radius normally defined the 

outer limit for the crack tip singular stress fit.

Another particularly useful feature of the Mechanica system is the facility to set up geometrical 

parameters (e.g. distance between multiple cracks) as variables and to automatically carry out 

sensitivity studies, by varying the parameters between user-specified limits. Where this facility 

was used, the adaptive-p mesh refinement process was repeated for each increment of the 

geometrical parameter, until the required convergence was reached.
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