1,668 research outputs found
Single-shot single-gate RF spin readout in silicon
For solid-state spin qubits, single-gate RF readout can help minimise the
number of gates required for scale-up to many qubits since the readout sensor
can integrate into the existing gates required to manipulate the qubits
(Veldhorst 2017, Pakkiam 2018). However, a key requirement for a scalable
quantum computer is that we must be capable of resolving the qubit state within
single-shot, that is, a single measurement (DiVincenzo 2000). Here we
demonstrate single-gate, single-shot readout of a singlet-triplet spin state in
silicon, with an average readout fidelity of at a
measurement bandwidth. We use this technique to measure a triplet to
singlet relaxation time of in precision donor quantum
dots in silicon. We also show that the use of RF readout does not impact the
maximum readout time at zero detuning limited by the to decay,
which remained at approximately . This establishes single-gate
sensing as a viable readout method for spin qubits
Geometric phase and o-mode blue shift in a chiral anisotropic medium inside a Fabry-P\'erot cavity
Anomalous spectral shift of transmission peaks is observed in a
Fabry--P\'erot cavity filled with a chiral anisotropic medium. The effective
refractive index value resides out of the interval between the ordinary and the
extraordinary refractive indices. The spectral shift is explained by
contribution of a geometric phase. The problem is solved analytically using the
approximate Jones matrix method, numerically using the accurate Berreman method
and geometrically using the generalized Mauguin--Poincar\'e rolling cone
method. The -mode blue shift is measured for a
4-methoxybenzylidene-4'--butylaniline twisted--nematic layer inside the
Fabry--P\'erot cavity. The twist is electrically induced due to the
homeoplanar--twisted configuration transition in an ionic-surfactant-doped
liquid crystal layer. Experimental evidence confirms the validity of the
theoretical model.Comment: the text is available both in English (Timofeev2015en.tex) and in
Russian (download: other formats - source - Timofeev2015ru.tex,
Timofeev2015rus.pdf
Brownian refrigeration by hybrid tunnel junctions
Voltage fluctuations generated in a hot resistor can cause extraction of heat
from a colder normal metal electrode of a hybrid tunnel junction between a
normal metal and a superconductor. We extend the analysis presented in [Phys.
Rev. Lett. 98, 210604 (2007)] of this heat rectifying system, bearing
resemblance to a Maxwell's demon. Explicit analytic calculations show that the
entropy of the total system is always increasing. We then consider a single
electron transistor configuration with two hybrid junctions in series, and show
how the cooling is influenced by charging effects. We analyze also the cooling
effect from nonequilibrium fluctuations instead of thermal noise, focusing on
the shot noise generated in another tunnel junction. We conclude by discussing
limitations for an experimental observation of the effect.Comment: 16 pages, 16 figure
Adiabatic nonlinear waves with trapped particles: II. Wave dispersion
A general nonlinear dispersion relation is derived in a nondifferential form
for an adiabatic sinusoidal Langmuir wave in collisionless plasma, allowing for
an arbitrary distribution of trapped electrons. The linear dielectric function
is generalized, and the nonlinear kinetic frequency shift is
found analytically as a function of the wave amplitude . Smooth
distributions yield , as usual. However,
beam-like distributions of trapped electrons result in different power laws, or
even a logarithmic nonlinearity, which are derived as asymptotic limits of the
same dispersion relation. Such beams are formed whenever the phase velocity
changes, because the trapped distribution is in autoresonance and thus evolves
differently from the passing distribution. Hence, even adiabatic is generally nonlocal.Comment: submitted together with Papers I and II
Scattering properties of singular and aggregate atmospheric hexagonal ice particles
This paper presents the results of calculating and analyzing the light scattering matrix of aggregates of atmospheric hexagonal ice particles located in cirrus clouds. Two types of basic particle shapes for aggregates are considered: a hexagonal column and a hexagonal plate. For both forms, two types of particle arrangement in aggregates were chosen: compact and non-compact. As a result, 4 sets of aggregates were built: compact hexagonal columns, non-compact hexagonal columns, compact hexagonal plates, and non-compact hexagonal plates. Each set consists of 9 aggregates differing in the number of particles in them, and the particles in each individual aggregate have the same shape and size, but different spatial orientation. The light scattering matrices for all aggregates were calculated for the case of arbitrary orientation in the geometric optics approximation. Dependences of the first element of the matrix on the number of particles in aggregate, with different types of particle arrangement, and for two types of shapes are give
- …