9 research outputs found

    Principal-component-based population structure adjustment in the North American Rheumatoid Arthritis Consortium data: impact of single-nucleotide polymorphism set and analysis method

    Get PDF
    Population structure occurs when a sample is composed of individuals with different ancestries and can result in excess type I error in genome-wide association studies. Genome-wide principal-component analysis (PCA) has become a popular method for identifying and adjusting for subtle population structure in association studies. Using the Genetic Analysis Workshop 16 (GAW16) NARAC data, we explore two unresolved issues concerning the use of genome-wide PCA to account for population structure in genetic associations studies: the choice of single-nucleotide polymorphism (SNP) subset and the choice of adjustment model. We computed PCs for subsets of genome-wide SNPs with varying levels of LD. The first two PCs were similar for all subsets and the first three PCs were associated with case status for all subsets. When the PCs associated with case status were included as covariates in an association model, the reduction in genomic inflation factor was similar for all SNP sets. Several models have been proposed to account for structure using PCs, but it is not yet clear whether the different methods will result in substantively different results for association studies with individuals of European descent. We compared genome-wide association p-values and results for two positive-control SNPs previously associated with rheumatoid arthritis using four PC adjustment methods as well as no adjustment and genomic control. We found that in this sample, adjusting for the continuous PCs or adjusting for discrete clusters identified using the PCs adequately accounts for the case-control population structure, but that a recently proposed randomization test performs poorly

    Imputation of missing genotypes: an empirical evaluation of IMPUTE

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Imputation of missing genotypes is becoming a very popular solution for synchronizing genotype data collected with different microarray platforms but the effect of ethnic background, subject ascertainment, and amount of missing data on the accuracy of imputation are not well understood.</p> <p>Results</p> <p>We evaluated the accuracy of the program IMPUTE to generate the genotype data of partially or fully untyped single nucleotide polymorphisms (SNPs). The program uses a model-based approach to imputation that reconstructs the genotype distribution given a set of referent haplotypes and the observed data, and uses this distribution to compute the marginal probability of each missing genotype for each individual subject that is used to impute the missing data. We assembled genome-wide data from five different studies and three different ethnic groups comprising Caucasians, African Americans and Asians. We randomly removed genotype data and then compared the observed genotypes with those generated by IMPUTE. Our analysis shows 97% median accuracy in Caucasian subjects when less than 10% of the SNPs are untyped and missing genotypes are accepted regardless of their posterior probability. The median accuracy increases to 99% when we require 0.95 minimum posterior probability for an imputed genotype to be acceptable. The accuracy decreases to 86% or 94% when subjects are African Americans or Asians. We propose a strategy to improve the accuracy by leveraging the level of admixture in African Americans.</p> <p>Conclusion</p> <p>Our analysis suggests that IMPUTE is very accurate in samples of Caucasians origin, it is slightly less accurate in samples of Asians background, but substantially less accurate in samples of admixed background such as African Americans. Sample size and ascertainment do not seem to affect the accuracy of imputation.</p

    Omecamtiv mecarbil in chronic heart failure with reduced ejection fraction, GALACTIC‐HF: baseline characteristics and comparison with contemporary clinical trials

    Get PDF
    Aims: The safety and efficacy of the novel selective cardiac myosin activator, omecamtiv mecarbil, in patients with heart failure with reduced ejection fraction (HFrEF) is tested in the Global Approach to Lowering Adverse Cardiac outcomes Through Improving Contractility in Heart Failure (GALACTIC‐HF) trial. Here we describe the baseline characteristics of participants in GALACTIC‐HF and how these compare with other contemporary trials. Methods and Results: Adults with established HFrEF, New York Heart Association functional class (NYHA) ≄ II, EF ≀35%, elevated natriuretic peptides and either current hospitalization for HF or history of hospitalization/ emergency department visit for HF within a year were randomized to either placebo or omecamtiv mecarbil (pharmacokinetic‐guided dosing: 25, 37.5 or 50 mg bid). 8256 patients [male (79%), non‐white (22%), mean age 65 years] were enrolled with a mean EF 27%, ischemic etiology in 54%, NYHA II 53% and III/IV 47%, and median NT‐proBNP 1971 pg/mL. HF therapies at baseline were among the most effectively employed in contemporary HF trials. GALACTIC‐HF randomized patients representative of recent HF registries and trials with substantial numbers of patients also having characteristics understudied in previous trials including more from North America (n = 1386), enrolled as inpatients (n = 2084), systolic blood pressure &lt; 100 mmHg (n = 1127), estimated glomerular filtration rate &lt; 30 mL/min/1.73 m2 (n = 528), and treated with sacubitril‐valsartan at baseline (n = 1594). Conclusions: GALACTIC‐HF enrolled a well‐treated, high‐risk population from both inpatient and outpatient settings, which will provide a definitive evaluation of the efficacy and safety of this novel therapy, as well as informing its potential future implementation

    Acoustic over-exposure triggers burst firing in dorsal cochlear nucleus fusiform cells

    Get PDF
    Acoustic over-exposure (AOE) triggers deafness in animals and humans and provokes auditory nerve degeneration. Weeks after exposure there is an increase in the cellular excitability within the dorsal cochlear nucleus (DCN) and this is considered as a possible neural correlate of tinnitus. The origin of this DCN hyperactivity phenomenon is still unknown but it is associated with neurons lying within the fusiform cell layer. Here we investigated changes of excitability within identified fusiform cells following AOE. Wistar rats were exposed to a loud (110 dB SPL) single tone (14.8 kHz) for 4 h. Auditory brainstem response recordings performed 3–4 days after AOE showed that the hearing thresholds were significantly elevated by about 20–30 dB SPL for frequencies above 15 kHz. Control fusiform cells fired with a regular firing pattern as assessed by the coefficient of variation of the inter-spike interval distribution of 0.19 ± 0.11 (n = 5). Three to four days after AOE, 40% of fusiform cells exhibited irregular bursting discharge patterns (coefficient of variation of the inter-spike interval distribution of 1.8 ± 0.6, n = 5; p < 0.05). Additionally the maximal firing following step current injections was reduced in these cells (from 83 ± 11 Hz, n = 5 in unexposed condition to 43 ± 6 Hz, n = 5 after AOE) and this was accompanied by an increased firing gain (from 0.09 ± 0.01 Hz/pA, n = 5 in unexposed condition to 0.56 ± 0.25 Hz/pA, n = 5 after AOE). Current and voltage clamp recordings suggest that the presence of bursts in fusiform cells is related to a down regulation of high voltage activated potassium currents

    Cardiac myosin activation with omecamtiv mecarbil in systolic heart failure

    No full text
    BACKGROUND The selective cardiac myosin activator omecamtiv mecarbil has been shown to improve cardiac function in patients with heart failure with a reduced ejection fraction. Its effect on cardiovascular outcomes is unknown. METHODS We randomly assigned 8256 patients (inpatients and outpatients) with symptomatic chronic heart failure and an ejection fraction of 35% or less to receive omecamtiv mecarbil (using pharmacokinetic-guided doses of 25 mg, 37.5 mg, or 50 mg twice daily) or placebo, in addition to standard heart-failure therapy. The primary outcome was a composite of a first heart-failure event (hospitalization or urgent visit for heart failure) or death from cardiovascular causes. RESULTS During a median of 21.8 months, a primary-outcome event occurred in 1523 of 4120 patients (37.0%) in the omecamtiv mecarbil group and in 1607 of 4112 patients (39.1%) in the placebo group (hazard ratio, 0.92; 95% confidence interval [CI], 0.86 to 0.99; P = 0.03). A total of 808 patients (19.6%) and 798 patients (19.4%), respectively, died from cardiovascular causes (hazard ratio, 1.01; 95% CI, 0.92 to 1.11). There was no significant difference between groups in the change from baseline on the Kansas City Cardiomyopathy Questionnaire total symptom score. At week 24, the change from baseline for the median N-terminal pro-B-type natriuretic peptide level was 10% lower in the omecamtiv mecarbil group than in the placebo group; the median cardiac troponin I level was 4 ng per liter higher. The frequency of cardiac ischemic and ventricular arrhythmia events was similar in the two groups. CONCLUSIONS Among patients with heart failure and a reduced ejection, those who received omecamtiv mecarbil had a lower incidence of a composite of a heart-failure event or death from cardiovascular causes than those who received placebo. (Funded by Amgen and others; GALACTIC-HF ClinicalTrials.gov number, NCT02929329; EudraCT number, 2016 -002299-28.)
    corecore