1,187 research outputs found
Shock Deformation in Zircon, a Comparison of Results from Shock-Reverberation and Single-Shock Experiments
The utility of the mineral zircon, ZrSiO4, as a shock-metamorphic geobarometer and geochronometer, has been steadily growing within the planetary science community. Zircon is an accessory phase found in many terrestrial rock types, lunar samples, lunar meteorites, martian meteorites and various other achondrites. Because zircon is refractory and has a high closure temperature for Pb diffusion, it has been used to determine the ages of some of the oldest material on Earth and elsewhere in the Solar System. Furthermore, major (O) and trace-element (REE, Ti, Hf) abundances and isotope compositions of zircon help characterize the petrogenetic environments and sources from which they crystallized. The response of zircon to impact-induced shock deformation is predominantly crystallographic, including dislocation creep and the formation of planar and sub-planar, low-angle grain boundaries; the formation of mechanical {112} twins; transformation to the high pressure polymorph reidite; the development of polycrystalline microtextures; and dissociation to the oxide constituents SiO2 and ZrO2. Shock microstructures can also variably affect the U- Pb isotope systematics of zircon and, in some instances, be used to constrain the impact age. While numerous studies have characterized shock deformation in zircon recovered from a variety of terrestrial impact craters and ejecta deposits and Apollo samples, experimental studies of shock deformation in zircon are limited to a handful of examples in the literature. In addition, the formation conditions (e.g., P, T) of various shock microstructures, such as planar-deformation bands, twins, and reidite lamellae, remain poorly con-strained. Furthermore, previous shocked-zircon experimental charges have not been analyzed using modern analytical equipment. This study will therefore under-take an new set of zircon shock experiments, which will then be microstructurally characterized using state-of-the-art instrumentation within the Astromaterials Research and Exploration Science Division (ARES), NASA Johnson Space Center
Dynamic Bayesian belief network to model the development of walking and cycling schemes
This paper aims to describe a model which represents the formulation of decision-making processes (over a number of years) affecting the step-changes of walking and cycling (WaC) schemes. These processes can be seen as being driven by a number of causal factors, many of which are associated with the attitudes of a variety of factors, in terms of both determining whether any scheme will be implemented and, if it is implemented, the extent to which it is used. The outputs of the model are pathways as to how the future might unfold (in terms of a number of future time steps) with respect to specific pedestrian and cyclist schemes. The transitions of the decision making processes are formulated using a qualitative simulation method, which describes the step-changes of the WaC scheme development. In this article a Bayesian belief network (BBN) theory is extended to model the influence between and within factors in the dynamic decision making process
Phase Heritage: Deciphering Evidence of Pre-Existing Phases via Inherited Crystallographic Orientations
The concept of 'phase heritage' (e.g., Timms et al., 2017a) involves microstructural recognition of the former presence of a phase that has since transformed to another via evidence encoded in crystallographic orientations. Phase heritage relies on the phenomenon that newly grown (daughter) phases nucleate with particular crystallographic orientation relationships with the preceding (parent) phase. This phenomenon is common for displacive (i.e., shear or martensitic) transformations, well documented in the metals and ceramics literature, but is relatively uncommon in geosciences. This presentation outlines the concepts behind this approach, showcases results from software for automated analysis of EBSD data, and illustrates examples of polymorphic and dissociation phase transformations in the ZrSiO4-ZrO2-SiO2 system, which has particularly useful applications for 'extreme thermobarometry' in impact environments (Timms et al., 2017a)
A Cognitive Model of an Epistemic Community: Mapping the Dynamics of Shallow Lake Ecosystems
We used fuzzy cognitive mapping (FCM) to develop a generic shallow lake
ecosystem model by augmenting the individual cognitive maps drawn by 8
scientists working in the area of shallow lake ecology. We calculated graph
theoretical indices of the individual cognitive maps and the collective
cognitive map produced by augmentation. The graph theoretical indices revealed
internal cycles showing non-linear dynamics in the shallow lake ecosystem. The
ecological processes were organized democratically without a top-down
hierarchical structure. The steady state condition of the generic model was a
characteristic turbid shallow lake ecosystem since there were no dynamic
environmental changes that could cause shifts between a turbid and a clearwater
state, and the generic model indicated that only a dynamic disturbance regime
could maintain the clearwater state. The model developed herein captured the
empirical behavior of shallow lakes, and contained the basic model of the
Alternative Stable States Theory. In addition, our model expanded the basic
model by quantifying the relative effects of connections and by extending it.
In our expanded model we ran 4 simulations: harvesting submerged plants,
nutrient reduction, fish removal without nutrient reduction, and
biomanipulation. Only biomanipulation, which included fish removal and nutrient
reduction, had the potential to shift the turbid state into clearwater state.
The structure and relationships in the generic model as well as the outcomes of
the management simulations were supported by actual field studies in shallow
lake ecosystems. Thus, fuzzy cognitive mapping methodology enabled us to
understand the complex structure of shallow lake ecosystems as a whole and
obtain a valid generic model based on tacit knowledge of experts in the field.Comment: 24 pages, 5 Figure
Evidence for a lineage of virulent bacteriophages that target Campylobacter.
BACKGROUND: Our understanding of the dynamics of genome stability versus gene flux within bacteriophage lineages is limited. Recently, there has been a renewed interest in the use of bacteriophages as 'therapeutic' agents; a prerequisite for their use in such therapies is a thorough understanding of their genetic complement, genome stability and their ecology to avoid the dissemination or mobilisation of phage or bacterial virulence and toxin genes. Campylobacter, a food-borne pathogen, is one of the organisms for which the use of bacteriophage is being considered to reduce human exposure to this organism. RESULTS: Sequencing and genome analysis was performed for two Campylobacter bacteriophages. The genomes were extremely similar at the nucleotide level (> or = 96%) with most differences accounted for by novel insertion sequences, DNA methylases and an approximately 10 kb contiguous region of metabolic genes that were dissimilar at the sequence level but similar in gene function between the two phages. Both bacteriophages contained a large number of radical S-adenosylmethionine (SAM) genes, presumably involved in boosting host metabolism during infection, as well as evidence that many genes had been acquired from a wide range of bacterial species. Further bacteriophages, from the UK Campylobacter typing set, were screened for the presence of bacteriophage structural genes, DNA methylases, mobile genetic elements and regulatory genes identified from the genome sequences. The results indicate that many of these bacteriophages are related, with 10 out of 15 showing some relationship to the sequenced genomes. CONCLUSIONS: Two large virulent Campylobacter bacteriophages were found to show very high levels of sequence conservation despite separation in time and place of isolation. The bacteriophages show adaptations to their host and possess genes that may enhance Campylobacter metabolism, potentially advantaging both the bacteriophage and its host. Genetic conservation has been shown to extend to other Campylobacter bacteriophages, forming a highly conserved lineage of bacteriophages that predate upon campylobacters and indicating that highly adapted bacteriophage genomes can be stable over prolonged periods of time
In Situ Coordinated Analysis of Carbonaceous Chondrite Organic Matter
Microanalytical studies of carbonaceous chondrites (CCs) have identified a vast array of isotopically, chemically and texturally distinct organic components. These components were synthesized and processed within a range of physical and chemical environments, including the interstellar medium, the solar nebula and within asteroids. The nature and abundance of these molecules can be used to unravel the geochemical and isotopic record of their origins as well as their subsequent evolutionary journey
Zircon ages in granulite facies rocks: decoupling from geochemistry above 850 °C?
Granulite facies rocks frequently show a large spread in their zircon ages, the interpretation of which raises questions: Has the isotopic system been disturbed? By what process(es) and conditions did the alteration occur? Can the dates be regarded as real ages, reflecting several growth episodes? Furthermore, under some circumstances of (ultra-)high-temperature metamorphism, decoupling of zircon U–Pb dates from their trace element geochemistry has been reported. Understanding these processes is crucial to help interpret such dates in the context of the P–T history. Our study presents evidence for decoupling in zircon from the highest grade metapelites (> 850 °C) taken along a continuous high-temperature metamorphic field gradient in the Ivrea Zone (NW Italy). These rocks represent a well-characterised segment of Permian lower continental crust with a protracted high-temperature history. Cathodoluminescence images reveal that zircons in the mid-amphibolite facies preserve mainly detrital cores with narrow overgrowths. In the upper amphibolite and granulite facies, preserved detrital cores decrease and metamorphic zircon increases in quantity. Across all samples we document a sequence of four rim generations based on textures. U–Pb dates, Th/U ratios and Ti-in-zircon concentrations show an essentially continuous evolution with increasing metamorphic grade, except in the samples from the granulite facies, which display significant scatter in age and chemistry. We associate the observed decoupling of zircon systematics in high-grade non-metamict zircon with disturbance processes related to differences in behaviour of non-formula elements (i.e. Pb, Th, U, Ti) at high-temperature conditions, notably differences in compatibility within the crystal structure
Recommended from our members
Biomarker discovery and redundancy reduction towards classification using a multi-factorial MALDI-TOF MS T2DM mouse model dataset
Diabetes like many diseases and biological processes is not mono-causal. On the one hand multifactorial studies with complex experimental design are required for its comprehensive analysis. On the other hand, the data from these studies often include a substantial amount of redundancy such as proteins that are typically represented by a multitude of peptides. Coping simultaneously with both complexities (experimental and technological) makes data analysis a challenge for Bioinformatics
The ethics of practical reasoning : exploring the terrain
Social work has been under sustained scrutiny regarding the quality of decision-making. The assumption is that social workers make poor quality decisions. And yet our knowledge and understanding of how social workers make decisions is, at best, partial. In our view, examination of practitioner decision-making will be enhanced by considering the role that ethics plays in practical judgement in practice. Although there has been significant work regarding the role of values and ethics in practice, this work tends to idealise morality setting up external standards by which practice is judged. In this paper, we will argue that ethics in practice needs to be understood as more than simply operationalise ideal standards, ethics also entails critical engagement with social and ethical issues and can challenge idealised statements of values. We outline the idea of the ethical dimension of practical reasoning, consider its relationship to professional discretion, judgments and decision-making in order to provide a clear focus for this research agenda, and identify the practical challenges researching ethics in professional decision-making entails
- …
