1,065 research outputs found

    Wireless sensed environment for body area networks

    Get PDF
    In low power wireless body area networks it is envisaged that there will be communication between on-body devices and wireless nodes placed in the environment (sensed environment) to provide a range of applications including health monitoring. However, there remain major challenges to realise this scenario such as decisions on the optimal node location, node orientation, transmit power level, and the number of nodes to cover the area of interest (sensed environment) which if not correct can lead to poor coverage or over-provisioned, oversized networks. In this paper we experiment with a BAN device and nodes deployed in a variety of locations throughout an office environment to represent a sensed environment. Packet loss rates (PLR) were analysed to explore trade-offs between node densities and transmit power levels. We determine that the deployment location, the density, and BAN transmission power level are important factors to be considered in the scenario where a mobile BAN communicates with a sensed environment. We found that deploying the environment nodes at chest height on the surrounding wall yielded the best results in terms of coverage and node density providing an optimal link between the BAN and the sensed environment

    Enhanced compatibility between coconut fibers/PP via chemical modification for 3D printing

    Get PDF
    Aiming to produce high-quality bio-based 3D printed products, in this work, coconut fibers were chemical modified using caprolactone. Fourier-transform infrared spectroscopy (FTIR) and nuclear magnetic reasonance (NMR) confirmed the grafting of the hydroxyl groups present on the surface of the fibers with caprolactone units. Furthermore, from contact angle (CA) analyses, the higher hydrophobicity of fibers after chemical treatment was confirmed, which improved its affinity with PP. The enhanced filler/matrix compatibility was reflected on the mechanical performance and processability of the ensuing composites. The modified fibers derived composites showed higher stiffness and higher melting flow index (MFI), when compared to the untreated counterparts. The composites were used to produce 3D printed specimens. Smother filaments were obtained using modified fibers, which confirms the better compatibility of fibers/PP. The surface of the 3D printed composite specimen produced using treated fibers, presented smooth surface, similar to the PP. This observation highlights the enhancement of the 3D printing quality due to the chemical modification of fibers. © 2021, The Author(s), under exclusive licence to Springer Nature Switzerland AG.publishe

    A review of the accuracy and utility of motion sensors to measure physical activity of frail older hospitalised patients.

    Get PDF
    The purpose of this review was to examine the utility and accuracy of commercially available motion sensors to measure step-count and time spent upright in frail older hospitalized patients. A database search (CINAHL and PubMed, 2004–2014) and a further hand search of papers’ references yielded 24 validation studies meeting the inclusion criteria. Fifteen motion sensors (eight pedometers, six accelerometers, and one sensor systems) have been tested in older adults. Only three have been tested in hospital patients, two of which detected postures and postural changes accurately, but none estimated step-count accurately. Only one motion sensor remained accurate at speeds typical of frail older hospitalized patients, but it has yet to be tested in this cohort. Time spent upright can be accurately measured in the hospital, but further validation studies are required to determine which, if any, motion sensor can accurately measure step-count

    Step-count accuracy of three motion sensors for older and frail medical inpatients

    Get PDF
    Objectives: To measure the step-count accuracy of an ankle-worn accelerometer, a thigh-worn accelerometer and one pedometer in older and frail inpatients. Design: Cross-sectional design study. Setting: Research room within a hospital. Participants: Convenience sample of inpatients aged ≥65 years, able to walk 20 metres unassisted, with or without a walking-aid. Intervention: Patients completed a 40-minute programme of predetermined tasks while wearing the three motion sensors simultaneously. Video-recording of the procedure provided the criterion measurement of step-count. Main Outcome Measures: Mean percentage (%) errors were calculated for all tasks, slow versus fast walkers, independent versus walking-aid-users, and over shorter versus longer distances. The Intra-class Correlation was calculated and accuracy was visually displayed by Bland-Altman plots. Results: Thirty-two patients (78.1 ±7.8 years) completed the study. Fifteen were female and 17 used walking-aids. Their median speed was 0.46 m/sec (interquartile range, IQR 0.36-0.66). The ankle-worn accelerometer overestimated steps (median 1% error, IQR -3 to 13). The other motion sensors underestimated steps (40% error (IQR -51 to -35) and 38% (IQR -93 to -27), respectively). The ankle-worn accelerometer proved more accurate over longer distances (3% error, IQR 0 to 9), than shorter distances (10%, IQR -23 to 9). Conclusions: The ankle-worn accelerometer gave the most accurate step-count measurement and was most accurate over longer distances. Neither of the other motion sensors had acceptable margins of error

    Uniaxial strain control of spin-polarization in multicomponent nematic order of BaFe2_{2}As2_{2}

    Get PDF
    The iron-based high temperature superconductors exhibit a rich phase diagram reflecting a complex interplay between spin, lattice, and orbital degrees of freedom [1-4]. The nematic state observed in many of these compounds epitomizes this complexity, by entangling a real-space anisotropy in the spin fluctuation spectrum with ferro-orbital order and an orthorhombic lattice distortion [5-7]. A more subtle and much less explored facet of the interplay between these degrees of freedom arises from the sizable spin-orbit coupling present in these systems, which translates anisotropies in real space into anisotropies in spin space. Here, we present a new technique enabling nuclear magnetic resonance under precise tunable strain control, which reveals that upon application of a tetragonal symmetry-breaking strain field, the magnetic fluctuation spectrum in the paramagnetic phase of BaFe2_{2}As2_{2} also acquires an anisotropic response in spin-space. Our results unveil a hitherto uncharted internal spin structure of the nematic order parameter, indicating that similar to liquid crystals, electronic nematic materials may offer a novel route to magneto-mechanical control.Comment: 11 pages, 5 figure

    Heliophysics Event Knowledgebase for the Solar Dynamics Observatory and Beyond

    Get PDF
    The immense volume of data generated by the suite of instruments on SDO requires new tools for efficient identifying and accessing data that is most relevant to research investigations. We have developed the Heliophysics Events Knowledgebase (HEK) to fill this need. The HEK system combines automated data mining using feature-detection methods and high-performance visualization systems for data markup. In addition, web services and clients are provided for searching the resulting metadata, reviewing results, and efficiently accessing the data. We review these components and present examples of their use with SDO data.Comment: 17 pages, 4 figure
    • …
    corecore