1,147 research outputs found

    C+O detonations in thermonuclear supernovae: Interaction with previously burned material

    Get PDF
    In the context of explosion models for Type Ia Supernovae, we present one- and two-dimensional simulations of fully resolved detonation fronts in degenerate C+O White Dwarf matter including clumps of previously burned material. The ability of detonations to survive the passage through sheets of nuclear ashes is tested as a function of the width and composition of the ash region. We show that detonation fronts are quenched by microscopically thin obstacles with little sensitivity to the exact ash composition. Front-tracking models for detonations in macroscopic explosion simulations need to include this effect in order to predict the amount of unburned material in delayed detonation scenarios.Comment: 6 pages, 9 figures, uses isotope.sty, accepted for publication in A&

    On Type Ia Supernovae From The Collisions of Two White Dwarfs

    Full text link
    We explore collisions between two white dwarfs as a pathway for making Type Ia Supernovae (SNIa). White dwarf number densities in globular clusters allow 10-100 redshift <1 collisions per year, and observations by (Chomiuk et al. 2008) of globular clusters in the nearby S0 galaxy NGC 7457 have detected what is likely to be a SNIa remnant. We carry out simulations of the collision between two 0.6 solar mass white dwarfs at various impact parameters and mass resolutions. For impact parameters less than half the radius of the white dwarf, we find such collisions produce approximately 0.4 solar masses of Ni56, making such events potential candidates for underluminous SNIa or a new class of transients between Novae and SNIa.Comment: 4 pages, 4 figures, 1 tabl

    Proton-Rich Nuclear Statistical Equilibrium

    Full text link
    Proton-rich material in a state of nuclear statistical equilibrium (NSE) is one of the least studied regimes of nucleosynthesis. One reason for this is that after hydrogen burning, stellar evolution proceeds at conditions of equal number of neutrons and protons or at a slight degree of neutron-richness. Proton-rich nucleosynthesis in stars tends to occur only when hydrogen-rich material that accretes onto a white dwarf or neutron star explodes, or when neutrino interactions in the winds from a nascent proto-neutron star or collapsar-disk drive the matter proton-rich prior to or during the nucleosynthesis. In this paper we solve the NSE equations for a range of proton-rich thermodynamic conditions. We show that cold proton-rich NSE is qualitatively different from neutron-rich NSE. Instead of being dominated by the Fe-peak nuclei with the largest binding energy per nucleon that have a proton to nucleon ratio close to the prescribed electron fraction, NSE for proton-rich material near freeze-out temperature is mainly composed of Ni56 and free protons. Previous results of nuclear reaction network calculations rely on this non-intuitive high proton abundance, which this paper will explain. We show how the differences and especially the large fraction of free protons arises from the minimization of the free energy as a result of a delicate competition between the entropy and the nuclear binding energy.Comment: 4 pages, 7 figure

    Surface Detonations in Double Degenerate Binary Systems Triggered by Accretion Stream Instabilities

    Full text link
    We present three-dimensional simulations on a new mechanism for the detonation of a sub-Chandrasekhar CO white dwarf in a dynamically unstable system where the secondary is either a pure He white dwarf or a He/CO hybrid. For dynamically unstable systems where the accretion stream directly impacts the surface of the primary, the final tens of orbits can have mass accretion rates that range from 10510^{-5} to 103M10^{-3} M_{\odot} s1^{-1}, leading to the rapid accumulation of helium on the surface of the primary. After 102\sim 10^{-2} MM_{\odot} of helium has been accreted, the ram pressure of the hot helium torus can deflect the accretion stream such that the stream no longer directly impacts the surface. The velocity difference between the stream and the torus produces shearing which seeds large-scale Kelvin-Helmholtz instabilities along the interface between the two regions. These instabilities eventually grow into dense knots of material that periodically strike the surface of the primary, adiabatically compressing the underlying helium torus. If the temperature of the compressed material is raised above a critical temperature, the timescale for triple-α\alpha reactions becomes comparable to the dynamical timescale, leading to the detonation of the primary's helium envelope. This detonation drives shockwaves into the primary which tend to concentrate at one or more focal points within the primary's CO core. If a relatively small amount of mass is raised above a critical temperature and density at these focal points, the CO core may itself be detonated.Comment: 6 pages, 4 figures, 1 table. Submitted to ApJL. For a high-resolution version, movies, and other supporting material see http://www.ucolick.org/~jfg/projects/double-white-dwarf-accretion

    Making Black Holes in Supernovae

    Get PDF
    The possibility of making stellar mass black holes in supernovae that otherwise produce viable Type II and Ib supernova explosions is discussed and estimates given of their number in the Milky Way Galaxy. Observational diagnostics of stellar mass black hole formation are reviewed. While the equation of state sets the critical mass, fall back during the explosion is an equally important (and uncertain) element in determining if a black hole is formed. SN 1987A may or may not harbor a black hole, but if the critical mass for neutron stars is 1.5 - 1.6 M\sun, as Brown and Bethe suggest, it probably does. Observations alone do not yet resolve the issue. Reasons for this state of ambiguity are discussed and suggestions given as to how gamma-ray and x-ray observations in the future might help.Comment: 14 pages, uuencoded gzipped postscript, Accepted Nuclear Physics A, Gerry Brown Festschrift contributio

    On Carbon Burning in Super Asymptotic Giant Branch Stars

    Get PDF
    We explore the detailed and broad properties of carbon burning in Super Asymptotic Giant Branch (SAGB) stars with 2755 MESA stellar evolution models. The location of first carbon ignition, quenching location of the carbon burning flames and flashes, angular frequency of the carbon core, and carbon core mass are studied as a function of the ZAMS mass, initial rotation rate, and mixing parameters such as convective overshoot, semiconvection, thermohaline and angular momentum transport. In general terms, we find these properties of carbon burning in SAGB models are not a strong function of the initial rotation profile, but are a sensitive function of the overshoot parameter. We quasi-analytically derive an approximate ignition density, ρign2.1×106\rho_{ign} \approx 2.1 \times 10^6 g cm3^{-3}, to predict the location of first carbon ignition in models that ignite carbon off-center. We also find that overshoot moves the ZAMS mass boundaries where off-center carbon ignition occurs at a nearly uniform rate of ΔMZAMS\Delta M_{\rm ZAMS}/Δfov\Delta f_{\rm{ov}}\approx 1.6 MM_{\odot}. For zero overshoot, fovf_{\rm{ov}}=0.0, our models in the ZAMS mass range \approx 8.9 to 11 MM_{\odot} show off-center carbon ignition. For canonical amounts of overshooting, fovf_{\rm{ov}}=0.016, the off-center carbon ignition range shifts to \approx 7.2 to 8.8 MM_{\odot}. Only systems with fovf_{\rm{ov}} 0.01\geq 0.01 and ZAMS mass \approx 7.2-8.0 MM_{\odot} show carbon burning is quenched a significant distance from the center. These results suggest a careful assessment of overshoot modeling approximations on claims that carbon burning quenches an appreciable distance from the center of the carbon core.Comment: Accepted ApJ; 23 pages, 21 figures, 5 table

    Neutrinos from beta processes in a presupernova: probing the isotopic evolution of a massive star

    Get PDF
    We present a new calculation of the neutrino flux received at Earth from a massive star in the 24\sim 24 hours of evolution prior to its explosion as a supernova (presupernova). Using the stellar evolution code MESA, the neutrino emissivity in each flavor is calculated at many radial zones and time steps. In addition to thermal processes, neutrino production via beta processes is modeled in detail, using a network of 204 isotopes. We find that the total produced νe\nu_{e} flux has a high energy spectrum tail, at E34E \gtrsim 3 - 4 MeV, which is mostly due to decay and electron capture on isotopes with A=5060A = 50 - 60. In a tentative window of observability of E0.5E \gtrsim 0.5 MeV and t<2t < 2 hours pre-collapse, the contribution of beta processes to the νe\nu_{e} flux is at the level of 90%\sim90\% . For a star at D=1D=1 kpc distance, a 17 kt liquid scintillator detector would typically observe several tens of events from a presupernova, of which up to 30%\sim 30\% due to beta processes. These processes dominate the signal at a liquid argon detector, thus greatly enhancing its sensitivity to a presupernova.Comment: 14 pages, 5 figure
    corecore