2,128 research outputs found

    Investigation of the role of neutron transfer in the fusion of 32,34S with 197Au,208Pb using quasi-elastic scattering

    Get PDF
    Excitation functions for quasi-elastic scattering have been measured at backward angles for the systems 32,34S+197Au and 32,34S+208Pb for energies spanning the Coulomb barrier. Representative distributions, sensitive to the low energy part of the fusion barrier distribution, have been extracted from the data. For the fusion reactions of 32,34S with 197Au couplings related to the nuclear structure of 197Au appear to be dominant in shaping the low energy part of the barrier distibution. For the system 32S+208Pb the barrier distribution is broader and extends further to lower energies, than in the case of 34S+208Pb. This is consistent with the interpretation that the neutron pick-up channels are energetically more favoured in the 32S induced reaction and therefore couple more strongly to the relative motion. It may also be due to the increased collectivity of 32S, when compared with 34S

    Dynamic control of selectivity in the ubiquitination pathway revealed by an ASP to GLU substitution in an intra-molecular salt-bridge network

    Get PDF
    Ubiquitination relies on a subtle balance between selectivity and promiscuity achieved through specific interactions between ubiquitin-conjugating enzymes (E2s) and ubiquitin ligases (E3s). Here, we report how a single aspartic to glutamic acid substitution acts as a dynamic switch to tip the selectivity balance of human E2s for interaction toward E3 RING-finger domains. By combining molecular dynamic simulations, experimental yeast-two-hybrid screen of E2-E3 (RING) interactions and mutagenesis, we reveal how the dynamics of an internal salt-bridge network at the rim of the E2-E3 interaction surface controls the balance between an “open”, binding competent, and a “closed”, binding incompetent state. The molecular dynamic simulations shed light on the fine mechanism of this molecular switch and allowed us to identify its components, namely an aspartate/glutamate pair, a lysine acting as the central switch and a remote aspartate. Perturbations of single residues in this network, both inside and outside the interaction surface, are sufficient to switch the global E2 interaction selectivity as demonstrated experimentally. Taken together, our results indicate a new mechanism to control E2-E3 interaction selectivity at an atomic level, highlighting how minimal changes in amino acid side-chain affecting the dynamics of intramolecular salt-bridges can be crucial for protein-protein interactions. These findings indicate that the widely accepted sequence-structure-function paradigm should be extended to sequence-structure-dynamics-function relationship and open new possibilities for control and fine-tuning of protein interaction selectivity

    Promiscuous, non-catalytic, tandem carbohydrate-binding modules modulate the cell-wall structure and development of transgenic tobacco (Nicotiana tabacum) plants

    Get PDF
    We have compared heterologous expression of two types of carbohydrate binding module (CBM) in tobacco cell walls. These are the promiscuous CBM29 modules (a tandem CBM29-1-2 and its single derivative CBM29-2), derived from a non-catalytic protein1, NCP1, of the Piromyces equi cellulase/hemicellulase complex, and the less promiscuous tandem CBM2b-1-2 from the Cellulomonas fimi xylanase 11A. CBM-labelling studies revealed that CBM29-1-2 binds indiscriminately to every tissue of the wild-type tobacco stem whereas binding of CBM2b-1-2 was restricted to vascular tissue. The promiscuous CBM29-1-2 had much more pronounced effects on transgenic tobacco plants than the less promiscuous CBM2b-1-2. Reduced stem elongation and prolonged juvenility, resulting in delayed flower development, were observed in transformants expressing CBM29-1-2 whereas such growth phenotypes were not observed for CBM2b-1-2 plants. Histological examination and electron microscopy revealed layers of collapsed cortical cells in the stems of CBM29-1-2 plants whereas cellular deformation in the stem cortical cells of CBM2b-1-2 transformants was less severe. Altered cell expansion was also observed in most parts of the CBM29-1-2 stem whereas for the CBM2b-1-2 stem this was observed in the xylem cells only. The cellulose content of the transgenic plants was not altered. These results support the hypothesis that CBMs can modify cell wall structure leading to modulation of wall loosening and plant growth

    Muscular diacylglycerol metabolism and insulin resistance

    Get PDF
    Failure of insulin to elicit an increase in glucose uptake and metabolism in target tissues such as skeletal muscle is a major characteristic of non-insulin dependent type 2 diabetes mellitus. A strong correlation between intramyocellular triacylglycerol concentrations and the severity of insulin resistance has been found and led to the assumption that lipid oversupply to skeletal muscle contributes to reduced insulin action. However, the molecular mechanism that links intramyocellular lipid content with the generation of muscle insulin resistance is still unclear. It appears unlikely that the neutral lipid metabolite triacylglycerol directly impairs insulin action. Hence it is believed that intermediates in fatty acid metabolism, such as fatty acyl-CoA, ceramides or diacylglycerol (DAG) link fat deposition in the muscle to compromised insulin signaling. DAG is identified as a potential mediator of lipid-induced insulin resistance, as increased DAG levels are associated with protein kinase C activation and a reduction in both insulin-stimulated IRS-1 tyrosine phosphorylation and PI3 kinase activity. As DAG is an intermediate in the synthesis of triacylglycerol from fatty acids and glycerol, its level can be lowered by either improving the oxidation of cellular fatty acids or by accelerating the incorporation of fatty acids into triacylglycerol. This review discusses the evidence that implicates DAG being central in the development of muscular insulin resistance. Furthermore, we will discuss if and how modulation of skeletal muscle DAG levels could function as a possible therapeutic target for the treatment of type 2 diabetes mellitus

    Limited Effect of Y Chromosome Variation on Coronary Artery Disease and Mortality in UK Biobank

    Get PDF
    The effect of genetic variation in the male-specific region of the Y chromosome (MSY) on coronary artery disease and cardiovascular risk factors has been disputed. In this study, we systematically assessed the association of MSY genetic variation on these traits using a kin-cohort analysis of family disease history in the largest sample to date. METHODS: We tested 90 MSY haplogroups against coronary artery disease, hypertension, blood pressure, classical lipid levels, and all-cause mortality in up to 152 186 unrelated, genomically British individuals from UK Biobank. Unlike previous studies, we did not adjust for heritable lifestyle factors (to avoid collider bias) and instead adjusted for geographic variables and socioeconomic deprivation, given the link between MSY haplogroups and geography. For family history traits, subject MSY haplogroups were tested against father and mother disease as validation and negative control, respectively. RESULTS: Our models find little evidence for an effect of any MSY haplogroup on cardiovascular risk in participants. Parental models confirm these findings. CONCLUSIONS: Kin-cohort analysis of the Y chromosome uniquely allows for discoveries in subjects to be validated using family history data. Despite our large sample size, improved models, and parental validation, there is little evidence to suggest cardiovascular risk in UK Biobank is influenced by genetic variation in MSY

    The use of biotin tagging in Saccharomyces cerevisiae improves the sensitivity of chromatin immunoprecipitation

    Get PDF
    Affinity tagging has been used in many global studies towards protein function. We describe a highly efficient system for in vivo biotinylation of transcription factors in the yeast Saccharomyces cerevisiae, which is based on the bacterial BirA biotin ligase. The strength of the biotin–streptavidin interaction was exploited to improve detection of in vivo protein–DNA complexes in chromatin immunoprecipitation (ChIP) experiments. In a test system using the biotin-tagged LexA DNA-binding protein, we found that stringent washing conditions resulted in a strong improvement of the signal-to-noise ratios. Yeast strains with chromosomally integrated versions of tagged transcription factor genes were generated using N- or C-terminal biotin-tagging cassettes. ChIP experiments with biotinylated Rbp3p, a RNA polymerase II subunit, showed that Rbp3p-binding could even be detected at weakly expressed genes. Other methods failed to detect RNA polymerase II binding at such genes. Our results show that biotinylation of yeast transcription factors improves the detection of in vivo protein–DNA complexes

    Evidence of Double Phonon Excitations in ^{16}O + ^{208}Pb Reaction

    Full text link
    The fusion cross-sections for ^{16}O + ^{208}Pb, measured to high precision, enable the extraction of the distribution of fusion barriers. This shows a structure markedly different from the single-barrier which might be expected for fusion of two doubly-closed shell nuclei. The results of exact coupled channel calculations performed to understand the observations are presented. These calculations indicate that coupling to a double octupole phonon excited state in ^{208}Pb is necessary to explain the experimental barrier distributions.Comment: 6 pages, 2 figures, To be published in the Proceedings of the FUSION 97 Conference, South Durras, Australia, March 1997 (J. Phys. G

    Myoclonus-dystonia : distinctive motor and non-motor phenotype from other dystonia syndromes

    Get PDF
    Background: myoclonus-dystonia (M-D) due to a pathogenic variant of SGCE is an autosomal dominant inherited movement disorder. Apart from motor symptoms, psychiatric disorders are highly prevalent in patients with MD. Previous studies suggest, but never tested directly, that the type of psychiatric disorder differs between dystonia syndromes, probably related to disease specific pathology. Little is known about other non-motor symptoms (NMS) in M.D. Here, we systematically study NMS in M-D in direct comparison to other types of dystonia and healthy controls. Methods: Standardized questionnaires were used to assess type and severity of psychiatric co-morbidity, sleep problems, fatigue and quality of life. Results of M-D patients with a pathogenic variant of SGCE were compared to results of idiopathic cervical dystonia (CD) patients, dopa-responsive dystonia (DRD) patients with a pathogenic variant of GCH1 and controls. Results: We included 164 participants: 41 M-D, 51 CD, 19 DRD patients, 53 controls. Dystonia patients (M-D, CD and DRD) had an increased prevalence of psychiatric disorders compared to controls (56-74% vs. 29%). In M-D we found a significantly increased prevalence of obsessive-compulsive disorder (OCD) and psychosis compared to CD and DRD. All dystonia patients had more sleep problems (49-68% vs. 36%) and fatigue (42-73% vs. 15%) than controls. Compared to other dystonia subtypes, M-D patients reported less excessive daytime sleepiness and fatigue. Conclusion: Psychiatric comorbidity is frequent in all dystonia types, but OCD and psychosis are more common in M-D patients. Further research is necessary to elucidate underlying pathways

    A low-pain assessment model for laboratories and tutorials

    Get PDF
    Continuous assessment motivates students to become engaged with coursework, but presents challenges for staff due to the workload involved in marking and delivering feedback. Care must be taken to avoid students concentrating on simply accumulating marks, to the detriment of learning. We present a Checkpoint assessment model which strives to find a balance between these factors, and show how the Checkpoint model can be applied in tutorial and laboratory environments. Based on an evaluation of changes to student attitudes and performance within a large first-year physics course, we conclude that the Checkpoint model is effective at improving both student satisfaction and results
    corecore