3 research outputs found

    Increased Mortality in SDHB but Not in SDHD Pathogenic Variant Carriers

    Get PDF
    Germline mutations in succinate dehydrogenase subunit B and D (SDHB and SDHD) are predisposed to hereditary paraganglioma (PGL) and pheochromocytoma (PHEO). The phenotype of pathogenic variants varies according to the causative gene. In this retrospective study, we estimate the mortality of a nationwide cohort of SDHB variant carriers and that of a large cohort of SDHD variant carriers and compare it to the mortality of a matched cohort of the general Dutch population. A total of 192 SDHB variant carriers and 232 SDHD variant carriers were included in this study. The Standard Mortality Ratio (SMR) for SDHB mutation carriers was 1.89, increasing to 2.88 in carriers affected by PGL. For SDHD variant carriers the SMR was 0.93 and 1.06 in affected carriers. Compared to the general population, mortality seems to be increased in SDHB variant carriers, especially in those affected by PGL. In SDHD variant carriers, the mortality is comparable to that of the general Dutch population, even if they are affected by PGL. This insight emphasizes the significance of DNA-testing in all PGL and PHEO patients, since different clinical risks may warrant gene-specific management strategies

    Unenhanced CT imaging is highly sensitive to exclude pheochromocytoma: A multicenter study

    Get PDF
    Background: A substantial proportion of all pheochromocytomas is currently detected during the evaluation of an adrenal incidentaloma. Recently, it has been suggested that biochemical testing to rule out pheochromocytoma is unnecessary in case of an adrenal incidentaloma with an unenhanced attenuation value ≀10Hounsfield Units (HU) at computed tomography (CT). Objectives: We aimed to determine the sensitivity of the 10HU threshold value to exclude a pheochromocytoma. Methods: Retrospective multicenter study with systematic reassessment of preoperative unenhanced CT scans performed in patients in whom a histopathologically proven pheochromocytoma had been diagnosed. Unenhanced attenuation values were determined independently by two experienced radiologists. Sensitivity of the 10HU threshold was calculated, and interobserver consistency was assessed using the intraclass correlation coefficient (ICC). Results: 214 patients were identified harboring a total number of 222 pheochromocytomas. Maximum tumor diameter was 51 (39–74)mm. The mean attenuation value within the region of interest was 36±10HU. Only one pheochromocytoma demonstrated an attenuation value ≀10HU, resulting in a sensitivity of 99.6% (95% CI: 97.5–99.9). ICC was 0.81 (95% CI: 0.75–0.86) with a standard error of measurement of 7.3HU between observers. Conclusion: The likelihood of a pheochromocytoma with an unenhanced attenuation value ≀10HU on CT is very low. The interobserver consistency in attenuation measurement is excellent. Our study supports the recommendation that in patients with an adrenal incidentaloma biochemical testing for ruling out pheochromocytoma is only indicated in adrenal tumors with an unenhanced attenuation value >10HU

    Integrative multi-omics analysis identifies a prognostic miRNA signature and a targetable miR-21-3p/TSC2/ mTOR axis in metastatic pheochromocytoma/ paraganglioma

    Get PDF
    Rationale: Pheochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumors that present variable outcomes. To date, no effective therapies or reliable prognostic markers are available for patients who develop metastatic PPGL (mPPGL). Our aim was to discover robust prognostic markers validated through in vitro models, and define specific therapeutic options according to tumor genomic features. Methods: We analyzed three PPGL miRNome datasets (n=443), validated candidate markers and assessed them in serum samples (n=36) to find a metastatic miRNA signature. An integrative study of miRNome, transcriptome and proteome was performed to find miRNA targets, which were further characterized in vitro. Results: A signature of six miRNAs (miR-21-3p, miR-183-5p, miR-182-5p, miR-96-5p, miR-551b-3p, and miR-202-5p) was associated with metastatic risk and time to progression. A higher expression of five of these miRNAs was also detected in PPGL patients’ liquid biopsies compared with controls. The combined expression of miR-21-3p/miR-183-5p showed the best power to predict metastasis (AUC=0.804, P=4.67·10-18), and was found associated in vitro with pro-metastatic features, such as neuroendocrine-mesenchymal transition phenotype, and increased cell migration rate. A pan-cancer multi-omic integrative study correlated miR-21-3p levels with TSC2 expression, mTOR pathway activation, and a predictive signature for mTOR inhibitor-sensitivity in PPGLs and other cancers. Likewise, we demonstrated in vitro a TSC2 repression and an enhanced rapamycin sensitivity upon miR-21-3p expression. Conclusions: Our findings support the assessment of miR-21-3p/miR-183-5p, in tumors and liquid biopsies, as biomarkers for risk stratification to improve the PPGL patients’ management. We propose miR-21-3p to select mPPGL patients who may benefit from mTOR inhibitors
    corecore