4,044 research outputs found

    A new lab facility for measuring bidirectional reflectance/emittance distribution functions of soils and canopies

    Get PDF
    Recently, a laboratory measurement facility has been realized for assessing the anisotropic reflectance and emittance behaviour of soils, leaves and small canopies under controlled illumination conditions. The facility consists of an ASD FieldSpec 3 spectroradiometer covering the spectral range from 350 – 2500 nm at 1 nm spectral sampling interval. The spectroradiometer is deployed using a fiber optic cable with either a 1°, 8° or 25° instantaneous field of view (IFOV). These measurements can be used to assess the plant pigment (chlorophyll, xanthophyll, etc.) and non-pigment system (water, cellulose, lignin, nitrogen, etc.). The thermal emittance is measured using a NEC TH9100 Infrared Thermal Imager. It operates in a single band covering the spectral range from 8 – 14 mm with a resolution of 0.02 K. Images are 320 (H) by 240 (V) pixels with an IFOV of 1.2 mrad. A 1000 W Quartz Tungsten Halogen (QTH) lamp is used as illumination source, approximating the radiance distribution of the sun. This one is put at a fixed position during a measurement session. Multi-angular measurements are achieved by using a robotic positioning system allowing to perform either reflectance or emittance measurements over almost a complete hemisphere. The hemisphere can be sampled continuously between 0° and 80° from nadir and up to a few degrees from the hot-spot configuration (depending on the IFOV of the measurement device) for a backscattering target. Measurement distance to targets can be varied between 0.25 and 1 m, although with a distance of more than 0.6 m it is not possible to cover the full hemisphere. The goal is to infer the BRDF (bidirectional reflectance distribution function) and BTDF (bidirectional thermal distribution function) from these multi-angular measurements for various surface types (like soils, agricultural crops, small tree canopies and artificial objects) and surface roughness. The steering of the robotic arm and the reading of the spectroradiometer and the thermal camera are all fully automated

    Pick-n-mix approaches to technology supply : XML as a standard “glue” linking universalised locals

    Get PDF
    We report on our experiences in a participatory design project to develop ICTs in a hospital ward working with deliberate self-harm patients. This project involves the creation and constant re-creation of sociotechnical ensembles in which XML-related technologies may come to play vital roles. The importance of these technologies arises from the aim underlying the project of creating systems that are shaped in locally meaningful ways but reach beyond their immediate context to gain wider importance. We argue that XML is well placed to play the role of "glue" that binds multiple such systems together. We analyse the implications of localised systems development for technology supply and argue that inscriptions that are evident in XML-related standards are and will be very important for the uptake of XML technologies

    Atom loss from Bose-Einstein condensates due to Feshbach resonance

    Full text link
    In recent experiments on Na Bose-Einstein condensates [S. Inouye et al, Nature 392, 151 (1998); J. Stenger et al, Phys. Rev. Lett. 82, 2422 (1999)], large loss rates were observed when a time-varying magnetic field was used to tune a molecular Feshbach resonance state near the state of pairs of atoms belonging to the condensate many-body wavefunction. A mechanism is offered here to account for the observed losses, based on the deactivation of the resonant molecular state by interaction with a third condensate atom.Comment: LaTeX, 4 pages, 4 PostScript figures, uses REVTeX and psfig, submitted to Physical Review A, Rapid Communication

    Studying patterns of use of transport modes through data mining - Application to U.S. national household travel survey data set

    Get PDF
    Data collection activities related to travel require large amounts of financial and human resources to be conducted successfully. When available resources are scarce, the information hidden in these data sets needs to be exploited, both to increase their added value and to gain support among decision makers not to discontinue such efforts. This study assessed the use of a data mining technique, association analysis, to understand better the patterns of mode use from the 2009 U.S. National Household Travel Survey. Only variables related to self-reported levels of use of the different transportation means are considered, along with those useful to the socioeconomic characterization of the respondents. Association rules potentially showed a substitution effect between cars and public transportation, in economic terms but such an effect was not observed between public transportation and nonmotorized modes (e.g., bicycling and walking). This effect was a policy-relevant finding, because transit marketing should be targeted to car drivers rather than to bikers or walkers for real improvement in the environmental performance of any transportation system. Given the competitive advantage of private modes extensively discussed in the literature, modal diversion from car to transit is seldom observed in practice. However, after such a factor was controlled, the results suggest that modal diversion should mainly occur from cars to transit rather than from nonmotorized modes to transi

    Super-shell structure in harmonically trapped fermionic gases and its semi-classical interpretation

    Full text link
    It was recently shown in self-consistent Hartree-Fock calculations that a harmonically trapped dilute gas of fermionic atoms with a repulsive two-body interaction exhibits a pronounced {\it super-shell} structure: the shell fillings due to the spherical harmonic trapping potential are modulated by a beat mode. This changes the ``magic numbers'' occurring between the beat nodes by half a period. The length and amplitude of the beating mode depends on the strength of the interaction. We give a qualitative interpretation of the beat structure in terms of a semiclassical trace formula that uniformly describes the symmetry breaking U(3) →\to SO(3) in a 3D harmonic oscillator potential perturbed by an anharmonic term ∝r4\propto r^4 with arbitrary strength. We show that at low Fermi energies (or particle numbers), the beating gross-shell structure of this system is dominated solely by the two-fold degenerate circular and (diametrically) pendulating orbits.Comment: Final version of procedings for the 'Nilsson conference
    • 

    corecore