16 research outputs found

    Neutron Transfer Studied with a Radioactive beam of 24Ne, using TIARA at SPIRAL

    Full text link
    A general experimental technique for high resolution studies of nucleon transfer reactions using radioactive beams is briefly described, together with the first new physics results that have been obtained with the new TIARA array. These first results from TIARA are for the reaction 24Ne(d,p)25Ne, studied in inverse kinematics with a pure radioactive beam of 100,000 pps from the SPIRAL facility at GANIL. The reaction probes the energies of neutron orbitals relevant to very neutron rich nuclei in this mass region and the results highlight the emergence of the N=16 magic number for neutrons and the associated disappearance of the N=20 neutron magic number for the very neutron rich neon isotopes.Comment: Proceedings of the Carpathian Summer School of Physics, Mamaia-Constanta, Romania, 13-24 June 200

    Neutron Transfer Studied with a Radioactive beam of 24Ne, using TIARA at SPIRAL

    No full text
    A general experimental technique for high resolution studies of nucleon transfer reactions using radioactive beams is briefly described, together with the first new physics results that have been obtained with the new TIARA array. These first results from TIARA are for the reaction 24Ne(d,p)25Ne, studied in inverse kinematics with a pure radioactive beam of 100,000 pps from the SPIRAL facility at GANIL. The reaction probes the energies of neutron orbitals relevant to very neutron rich nuclei in this mass region and the results highlight the emergence of the N=16 magic number for neutrons and the associated disappearance of the N=20 neutron magic number for the very neutron rich neon isotopes

    Reactions with the double-Borromean nucleus He-8

    No full text
    Expérience GANIL: SPIRALDifferential cross sections for elastic-scattering and neutron-transfer reactions along with cross sections for fusion in the 8He+65Cu system are reported at energies above the Coulomb barrier (Elab = 19.9 and 30.6 MeV). The present work demonstrates the feasibility of using inclusive measurements of characteristic in-beam γ rays with low-intensity (∼105 pps) radioactive ion beams to obtain the residue cross sections for fusion and neutron transfer. Exclusive measurements of γ rays in coincidence with light charged particles have been used to further characterize the direct reactions induced by this double-Borromean nucleus. Coupled reaction channels calculations are used to illustrate the important role played by the transfer channels and to help in understanding the influence of the structure of 8He on the reaction mechanism

    Evidence Of A (1)2 Component To The 12Be Ground State

    Get PDF
    International audienceData have been obtained on exclusive single neutron knockout cross sections from 12Be to study its ground state structure. The cross sections for the production of 11Be in its ground state (1/2+) and first excited state (0.32 MeV, 1/2−) have previously been measured, indicating a strong (2s½)2 component to the 12Be ground state. In the present experiment, performed at the GANIL laboratory, cross sections for the first (0.32 MeV, 1/2−) and second (1.78 MeV, 5/2+, unbound) excited states in 11Be were measured, which gives information on the admixture of (1p½)2 and (1math)2 components in the ground state of 12Be. A fragmentation beam of 12Be of ∼10000 pps (95% pure) was incident on a carbon target at 41 MeV/u. The beam particles were tracked onto the target, and their energies were measured event‐by‐event. The beam‐like residues were measured in a position sensitive telescope mounted at zero degrees, and neutrons were measured in the DéMoN array. The 1/2− state of 11Be was identified by measuring coincident 320 keV γ‐rays, using four NaI detectors. Full kinematic reconstruction of unbound states in 11Be was performed using coincident neutrons and 10Be ions. Detailed simulations were performed in order to interpret the data, and spectroscopic factors were calculated, using preliminary single particle removal cross sections calculated using a Glauber model. © 2005 American Institute of Physic

    Evidence of a (1d(5/2))(2) component to the Be-12 ground state

    Get PDF
    Data have been obtained on exclusive single neutron knockout cross sections from 12Be to study its ground state structure. The cross sections for the production of 11Be in its ground state (1/2 +) and first excited state (0.32 MeV, 1/2 -) have previously been measured, indicating a strong (2s 1 2) 2 component to the 12Be ground state. In the present experiment, performed at the GANIL laboratory, cross sections for the first (0.32 MeV, 1/2 -) and second (1.78 MeV, 5/2 +, unbound) excited states in 11Be were measured, which gives information on the admixture of (1p 1 2) 2 and (1d 5 2) 2 components in the ground state of 12Be. A fragmentation beam of 12Be of ∼10000 pps (95% pure) was incident on a carbon target at 41 MeV/u. The beam particles were tracked onto the target, and their energies were measured event-by-event. The beam-like residues were measured in a position sensitive telescope mounted at zero degrees, and neutrons were measured in the DéMoN array. The 1/2 - state of 11Be was identified by measuring coincident 320 keV γ-rays, using four NaI detectors. Full kinematic reconstruction of unbound states in 11Be was performed using coincident neutrons and 10Be ions. Detailed simulations were performed in order to interpret the data, and spectroscopic factors were calculated, using preliminary single particle removal cross sections calculated using a Glauber model. © 2005 American Institute of Physics
    corecore